Neuronal vulnerability and multilineage diversity in multiple sclerosis.
Adult
Animals
Astrocytes
/ metabolism
Autopsy
Cell Lineage
Cryopreservation
Female
Homeodomain Proteins
/ metabolism
Humans
Macrophages
/ metabolism
Male
Mice
Microglia
/ metabolism
Middle Aged
Multiple Sclerosis
/ genetics
Myelin Sheath
/ metabolism
Neurons
/ metabolism
Oligodendroglia
/ metabolism
Phagocytosis
RNA, Small Nuclear
/ analysis
RNA-Seq
Transcriptome
/ genetics
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
26
10
2018
accepted:
12
06
2019
pubmed:
19
7
2019
medline:
31
3
2020
entrez:
19
7
2019
Statut:
ppublish
Résumé
Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course at early stages, distinct lesion characteristics in cortical grey versus subcortical white matter and neurodegeneration at chronic stages. Here we used single-nucleus RNA sequencing to assess changes in expression in multiple cell lineages in MS lesions and validated the results using multiplex in situ hybridization. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper-cortical layers underlying meningeal inflammation; such MS neuron populations exhibited upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated microglia mapped most strongly to the rim of MS plaques. Notably, single-nucleus RNA sequencing identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions.
Identifiants
pubmed: 31316211
doi: 10.1038/s41586-019-1404-z
pii: 10.1038/s41586-019-1404-z
pmc: PMC6731122
mid: EMS83370
doi:
Substances chimiques
CUX2 protein, human
0
Homeodomain Proteins
0
RNA, Small Nuclear
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
75-82Subventions
Organisme : NINDS NIH HHS
ID : R01 NS040511
Pays : United States
Organisme : Medical Research Council
ID : G0701476
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_12009
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0300336
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : U41 HG002371
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS097305
Pays : United States
Organisme : Medical Research Council
ID : MR/M010503/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0802545
Pays : United Kingdom
Organisme : NINDS NIH HHS
ID : F32 NS103266
Pays : United States
Organisme : Medical Research Council
ID : G0300338
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0700392
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 108139
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K008803/1
Pays : United Kingdom
Références
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).
doi: 10.1016/S0140-6736(16)31678-6
Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018).
doi: 10.1056/NEJMra1401483
Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8, a028936 (2018).
doi: 10.1101/cshperspect.a028936
Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).
doi: 10.1056/NEJM199801293380502
Schirmer, L., Antel, J. P., Brück, W. & Stadelmann, C. Axonal loss and neurofilament phosphorylation changes accompany lesion development and clinical progression in multiple sclerosis. Brain Pathol. 21, 428–440 (2011).
doi: 10.1111/j.1750-3639.2010.00466.x
Peterson, J. W., Bö, L., Mörk, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).
doi: 10.1002/ana.1123
Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).
doi: 10.1093/brain/awm038
Magliozzi, R. et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).
doi: 10.1002/ana.22230
Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).
doi: 10.1056/NEJMoa1100648
Trapp, B. D. et al. Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study. Lancet Neurol. 17, 870–884 (2018).
doi: 10.1016/S1474-4422(18)30245-X
Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017).
doi: 10.1007/s00401-016-1636-z
Mainero, C. et al. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain 138, 932–945 (2015).
doi: 10.1093/brain/awv011
Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).
doi: 10.1038/s41586-019-0903-2
Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).
doi: 10.1038/s41586-019-0924-x
Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).
doi: 10.1126/science.aaf1204
Lodato, S. & Arlotta, P. Generating neuronal diversity in the mammalian cerebral cortex. Annu. Rev. Cell Dev. Biol. 31, 699–720 (2015).
doi: 10.1146/annurev-cellbio-100814-125353
Lee, S. et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell 164, 69–80 (2016).
doi: 10.1016/j.cell.2015.12.017
Mus, E., Hof, P. R. & Tiedge, H. Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 104, 10679–10684 (2007).
doi: 10.1073/pnas.0701532104
Bayraktar, O. A. et al. Single-cell in situ transcriptomic map of astrocyte cortical layer diversity. Preprint at https://doi.org/10.1101/432104 (2018).
Machado-Santos, J. et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8
doi: 10.1093/brain/awy151
Pasetto, L. et al. Targeting extracellular cyclophilin A reduces neuroinflammation and extends survival in a mouse model of amyotrophic lateral sclerosis. J. Neurosci. 37, 1413–1427 (2017).
doi: 10.1523/JNEUROSCI.2462-16.2016
Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).
doi: 10.1038/nature21029
Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).
doi: 10.1038/nature17623
Chang, A. et al. Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann. Neurol. 72, 918–926 (2012).
doi: 10.1002/ana.23693
Ousman, S. S. et al. Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature 448, 474–479 (2007).
doi: 10.1038/nature05935
Schirmer, L. et al. Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions. Ann. Neurol. 75, 810–828 (2014).
doi: 10.1002/ana.24168
Gadea, A., Schinelli, S. & Gallo, V. Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J. Neurosci. 28, 2394–2408 (2008).
doi: 10.1523/JNEUROSCI.5652-07.2008
Hametner, S. et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 74, 848–861 (2013).
doi: 10.1002/ana.23974
Fard, M. K. et al. BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions. Sci. Transl. Med. 9, eaam7816 (2017).
doi: 10.1126/scitranslmed.aam7816
Brophy, P. J., Boccaccio, G. L. & Colman, D. R. The distribution of myelin basic protein mRNAs within myelinating oligodendrocytes. Trends Neurosci. 16, 515–521 (1993).
doi: 10.1016/0166-2236(93)90196-S
Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).
doi: 10.1093/brain/awx113
Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).
doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
Haider, L. et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 139, 807–815 (2016).
doi: 10.1093/brain/awv398
Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2018).
doi: 10.1038/s41586-018-0453-z
Munschauer, M. et al. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature 561, 132–136 (2018).
doi: 10.1038/s41586-018-0453-z
Campbell, G. R. et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann. Neurol. 69, 481–492 (2011).
doi: 10.1002/ana.22109
Fischer, M. T. et al. Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136, 1799–1815 (2013).
doi: 10.1093/brain/awt110
Carassiti, D. et al. Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex. Neuropathol. Appl. Neurobiol. 44, 377–390 (2018).
doi: 10.1111/nan.12405
Absinta, M. et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J. Clin. Invest. 126, 2597–2609 (2016).
doi: 10.1172/JCI86198
Falcão, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).
doi: 10.1038/s41591-018-0236-y
Kirby, L. et al. Oligodendrocyte precursor cells are co-opted by the immune system to cross-present antigen and mediate cytotoxicity. Preprint at https://doi.org/10.1101/461434 (2018).
Matevossian, A. & Akbarian, S. Neuronal nuclei isolation from human postmortem brain tissue. J. Vis. Exp. 20, e914 (2008).
Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016).
doi: 10.1016/j.cell.2016.07.054
Maaten, L. d. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
doi: 10.1186/s13059-014-0550-8
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
doi: 10.1038/nbt.2859
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, omi.2011.0118 (2014).
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
doi: 10.1038/nmeth.4463
Meguro, R. et al. Nonheme-iron histochemistry for light and electron microscopy: a historical, theoretical and technical review. Arch. Histol. Cytol. 70, 1–19 (2007).
doi: 10.1679/aohc.70.1
Jahn, O., Tenzer, S., Bartsch, N., Patzig, J. & Werner, H. B. in The Cytoskeleton (ed. Dermietzel, R.) 335–353 (Humana, 2013).
Werneburg, S., Mühlenhoff, M., Stangel, M. & Hildebrandt, H. Polysialic acid on SynCAM 1 in NG2 cells and on neuropilin-2 in microglia is confined to intracellular pools that are rapidly depleted upon stimulation. Glia 63, 1240–1255 (2015).
Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).
doi: 10.1016/j.neuron.2012.03.026
Chen, Y. et al. NS21: re-defined and modified supplement B27 for neuronal cultures. J. Neurosci. Methods 171, 239–247 (2008).
doi: 10.1016/j.jneumeth.2008.03.013