Nephromyces Represents a Diverse and Novel Lineage of the Apicomplexa That Has Retained Apicoplasts.
Hematozoa
Lankesteria
Nephromycida
co-infection
endosymbiont
gregarine
mutualism
plastome
sporozoa
Journal
Genome biology and evolution
ISSN: 1759-6653
Titre abrégé: Genome Biol Evol
Pays: England
ID NLM: 101509707
Informations de publication
Date de publication:
01 10 2019
01 10 2019
Historique:
accepted:
16
07
2019
pubmed:
23
7
2019
medline:
28
3
2020
entrez:
23
7
2019
Statut:
ppublish
Résumé
A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to 1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, 2) search for the apicoplast genome of Nephromyces, and 3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the nonphotosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.
Identifiants
pubmed: 31328784
pii: 5536766
doi: 10.1093/gbe/evz155
pmc: PMC6777426
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2727-2740Informations de copyright
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Références
Biosystems. 1981;14(3-4):487-90
pubmed: 7337820
Genome Biol Evol. 2019 Jan 1;11(1):41-53
pubmed: 30500900
Protoplasma. 2018 Jan;255(1):297-357
pubmed: 28875267
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Proc Biol Sci. 2015 May 7;282(1806):20143027
pubmed: 25854886
Trends Parasitol. 2004 May;20(5):233-40
pubmed: 15105024
Nature. 2019 Apr;568(7750):103-107
pubmed: 30944491
Mol Biol Evol. 2004 Jun;21(6):1095-109
pubmed: 15014145
Syst Biol. 2013 Jul;62(4):611-5
pubmed: 23564032
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
ISME J. 2016 Aug;10(8):1877-90
pubmed: 26784357
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6914-6923
pubmed: 30872488
Syst Biol. 2018 Mar 01;67(2):216-235
pubmed: 28950365
Eur J Protistol. 2008 Aug;44(3):181-96
pubmed: 18304788
Annu Rev Microbiol. 2015;69:129-44
pubmed: 26092225
Science. 2001 Oct 5;294(5540):161-5
pubmed: 11588262
Mol Biol Evol. 2017 Sep 1;34(9):2355-2366
pubmed: 28549159
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16190-5
pubmed: 20736348
Nucleic Acids Res. 2017 Feb 28;45(4):e18
pubmed: 28204566
Mol Biol Evol. 2007 Sep;24(9):2139-50
pubmed: 17652333
Microbiol Rev. 1993 Dec;57(4):953-94
pubmed: 8302218
Mol Biochem Parasitol. 2004 Mar;134(1):127-35
pubmed: 14747150
Int Rev Cell Mol Biol. 2010;281:161-228
pubmed: 20460186
Proc Biol Sci. 2012 Jun 7;279(1736):2246-54
pubmed: 22298847
PLoS Pathog. 2015 Sep 03;11(9):e1005098
pubmed: 26336070
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):749-63
pubmed: 20124342
Cladistics. 2011 Apr;27(2):171-180
pubmed: 34875773
Water Res. 2016 Nov 15;105:305-313
pubmed: 27639055
Science. 1978 Jun 9;200(4346):1166-8
pubmed: 17745108
Mol Biol Evol. 2012 Jun;29(6):1587-98
pubmed: 22319162
Nat Rev Microbiol. 2004 Mar;2(3):203-16
pubmed: 15083156
Microbiology (Reading). 2000 Feb;146 ( Pt 2):315-321
pubmed: 10708370
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10200-7
pubmed: 25717057
J Comput Biol. 2012 May;19(5):455-77
pubmed: 22506599
J Eukaryot Microbiol. 2016 Jan-Feb;63(1):79-85
pubmed: 26173708
PeerJ. 2017 May 30;5:e3354
pubmed: 28584702
Mol Biol Evol. 2018 Feb 1;35(2):518-522
pubmed: 29077904
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
Int J Parasitol. 2016 Aug;46(9):537-44
pubmed: 27368611
Eur J Protistol. 2014 Oct;50(5):472-95
pubmed: 25238406
J Parasitol. 2003 Dec;89(6):1191-205
pubmed: 14740910
Trends Parasitol. 2008 Feb;24(2):60-7
pubmed: 18226585
Parasitology. 2018 Sep;145(10):1311-1323
pubmed: 29895336
Nat Protoc. 2013 Aug;8(8):1494-512
pubmed: 23845962
FEMS Microbiol Ecol. 2018 Apr 1;94(4):
pubmed: 29518196
PeerJ. 2015 Oct 08;3:e1319
pubmed: 26500826
J Parasitol. 1992 Apr;78(2):334-7
pubmed: 1556647
Nucleic Acids Res. 2005 Jan 20;33(2):511-8
pubmed: 15661851
J Morphol. 1978 Mar;155(3):287-309
pubmed: 633375
J Eukaryot Microbiol. 2007 Jan-Feb;54(1):66-72
pubmed: 17300522