Improving eDNA-based protist diversity assessments using networks of amplicon sequence variants.


Journal

Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692

Informations de publication

Date de publication:
11 2019
Historique:
received: 04 03 2019
revised: 25 07 2019
accepted: 25 07 2019
pubmed: 31 7 2019
medline: 8 5 2020
entrez: 31 7 2019
Statut: ppublish

Résumé

Effective and precise grouping of highly similar sequences remains a major bottleneck in the evaluation of high-throughput sequencing datasets. Amplicon sequence variants (ASVs) offer a promising alternative that may supersede the widely used operational taxonomic units (OTUs) in environmental sequencing studies. We compared the performance of a recently developed pipeline based on the algorithm DADA2 for obtaining ASVs against a pipeline based on the algorithm SWARM for obtaining OTUs. Illumina-sequencing of 29 individual ciliate species resulted in up to 11 ASVs per species, while SWARM produced up to 19 OTUs per species. To improve the congruency between species diversity and molecular diversity, we applied sequence similarity networks (SSNs) for second-level sequence grouping into network sequence clusters (NSCs). At 100% sequence similarity in SWARM-SSNs, NSC numbers decreased from 7.9-fold overestimation without abundance filter, to 4.5-fold overestimation when an abundance filter was applied. For the DADA2-SSN approach, NSC numbers decreased from 3.5-fold to 3-fold overestimation. Rand index cluster analyses predicted best binning results between 97% and 94% sequence similarity for both DADA2-SSNs and SWARM-SSNs. Depending on the ecological questions addressed in an environmental sequencing study with protists we recommend ASVs as replacement for OTUs, best in combination with SSNs.

Identifiants

pubmed: 31361938
doi: 10.1111/1462-2920.14764
doi:

Substances chimiques

DNA, Environmental 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4109-4124

Subventions

Organisme : Carl-Zeiss-Stiftung
Pays : International
Organisme : European Science Foundation
ID : 730984
Pays : International

Informations de copyright

© 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.

Références

Allali, I., Arnold, J.W., Roach, J., Cadenas, M.B., Butz, N., Hassan, H.M., et al. (2017) A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiol 17: 194.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.
Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J.T., Xu, Z.Z., et al. (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2: e00191-e00216.
Anslan, S., Nilsson, R.H., Wurzbacher, C., Baldrian, P., Tedersoo, L., and Bahram, M. (2018) Great differences in performance and outcome of high-throughput sequencing data analysis platforms for fungal metabarcoding. MycoKeys 39: 29-40.
Auer, L., Mariadassou, M., O'Donohue, M., Klopp, C., and Hernandez-Raquet, G. (2017) Analysis of large 16S rRNA illumina data sets: impact of singleton read filtering on microbial community description. Mol Ecol Resour 17: e122-e132.
Bachy, C., Dolan, J.R., López-García, P., Deschamps, P., and Moreira, D. (2013) Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME J 7: 244-255.
Bapteste, E. and Boucher, Y. (2008) Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol 16: 200-207.
Bik, H.M., Porazinska, D.L., Creer, S., Caporaso, J.G., Knight, R., and Thomas, W.K. (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27: 233-243.
Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., et al. (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10: 57-59.
Bonder, M.J., Abeln, S., Zaura, E., and Brandt, B.W. (2012) Comparing clustering and pre-processing in taxonomy analysis. Bioinformatics 28: 2891-2897.
Brown, E.A., Chain, F.J.J., Crease, T.J., MacIsaac, H.J., and Cristescu, M.E. (2015) Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities? Ecol Evol 5: 2234-2251.
Callahan, B.J., McMurdie, P.J., and Holmes, S.P. (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11: 2639-2643.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P. (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13: 581-583.
Caron, D.A., Countway, P.D., Savai, P., Gast, R.J., Schnetzer, A., Moorthi, S.D., et al. (2009) Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol 75: 5797-5808.
Chang, F., Qiu, W., Zamar, R.H., Lazarus, R., and Wang, X. (2010) Clues: an R package for nonparametric clustering based on local shrinking. J Stat Softw 33: 1-16.
Clare, E.L., Chain, F.J.J., Littlefair, J.E., and Cristescu, M.E. (2016) The effects of parameter choice on defining molecular operational taxonomic units and resulting ecological analyses of metabarcoding data. Genome 59: 981-990.
Coleman, A.W. (2005) Paramecium aurelia revisited. J Eukaryot Microbiol 52: 68-77.
Corel, E., Lopez, P., Méheust, R., and Bapteste, E. (2016) Network-thinking: graphs to analyze microbial complexity and evolution. Trends Microbiol 24: 224-237.
Csardi, G., and Nepusz, T. (2006) The igraph software package for complex network research. Int J Complex Syst 1695: 1-9.
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., et al. (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348: 1261605.
Dunthorn, M., Klier, J., Bunge, J., and Stoeck, T. (2012) Comparing the hyper-variable V4 and V9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. J Eukaryot Microbiol 59: 185-187.
Dunthorn, M., Otto, J., Berger, S.A., Stamatakis, A., Mahé, F., Romac, S., et al. (2014) Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol Biol Evol 31: 993-1009.
Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.
Flynn, J.M., Brown, E.A., Chain, F.J.J., MacIsaac, H.J., and Cristescu, M.E. (2015) Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecol Evol 5: 2252-2266.
Forster, D., Bittner, L., Karkar, S., Dunthorn, M., Romac, S., Audic, S., et al. (2015) Testing ecological theories with sequence similarity networks: marine ciliates exhibit similar geographic dispersal patterns as multicellular organisms. BMC Biol 13: 16.
Forster, D., Dunthorn, M., Stoeck, T., and Mahé, F. (2016) Comparison of three clustering approaches for detecting novel environmental microbial diversity. PeerJ 4: e1692.
Frøslev, T.G., Kjøller, R., Bruun, H.H., Ejrnaes, R., Brunbjerg, A.K., Pietroni, C., and Hansen, A.J. (2017) Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat Commun 8: 1188.
Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28: 3150-3152.
Gong, J., Dong, J., Liu, X., and Massana, R. (2013) Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164: 369-379.
Gong, J., Kim, S.-J., Kim, S.-Y., Min, G.-S., Roberts, D.M., Warren, A., and Choi, J.-K. (2007) Taxonomic redescriptions of two ciliates, Protogastrostyla pulchra n. g., n. comb. and Hemigastrostyla enigmatica (Ciliophora: Spirotrichea, Stichotrichia), with phylogenetic analyses based on 18S and 28S rRNA gene sequences. J Eukaryot Microbiol 54: 468-478.
Grattepanche, J.-D., Santoferrara, L.F., McManus, G.B., and Katz, L.A. (2014) Diversity of diversity: conceptual and methodological differences in biodiversity estimates of eukaryotic microbes as compared to bacteria. Trends Microbiol 22: 432-437.
Hubert, L., and Arabie, P. (1985) Comparing partitions. J Class 2: 193-218.
Huse, S.M., Welch, D.M., Morrison, H.G., and Sogin, M.L. (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12: 1889-1898.
Jusino, M.A., Banik, M.T., Palmer, J.M., Wray, A.K., Xiao, L., Pelton, E., et al. (2018) An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals. Mol Ecol Resour 19: 176-190.
Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., et al. (2018) Best practices for analysing microbiomes. Nat Rev Microbiol 16: 410-422.
Kumar, S., and Foissner, W. (2016) High cryptic soil ciliate (Ciliophora, Hypotrichida) diversity in Australia. Eur J Protistol 53: 61-95.
Kunin, V., Engelbrektson, A., Ochman, H., and Hugenholtz, P. (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12: 118-123.
Kusch, J. (1998) Local and temporal distribution of different genotypes of pond-dwelling Stentor coeruleus. Protist 149: 147-154.
Lane, D.J. (1991) 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E., and Goodfellow, M. (eds). Chichester, UK: John Wiley and Sons.
Lara, E., Berney, C., Harms, H., and Chatzinotas, A. (2007) Cultivation-independent analysis reveals a shift in ciliate 18S rRNA gene diversity in a polycyclic aromatic hydrocarbon-polluted soil. FEMS Microbiol Ecol 62: 365-373.
Lord, E., Cam, M.L., Bapteste, É., Méheust, R., Makarenkov, V., and Lapointe, F.-J. (2016) BRIDES: a new fast algorithm and software for characterizing evolving similarity networks using breakthroughs, roadblocks, impasses, detours, equals and shortcuts. PLoS One 11: e0161474.
Mahé, F., De Vargas, C., Bass, D., Czech, L., Stamatakis, A., Lara, E., et al. (2017) Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol 1: 0091.
Mahé, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M. (2014) Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2: e593.
Mahé, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M. (2015) Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3: e1420.
Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17: 10-12.
Medlin, L., Elwood, H.J., Stickel, S., and Sogin, M.L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491-499.
Miao, W., Fen, W.-S., Yu, Y.-H., Zhang, X.-Y., and Shen, Y.-F. (2004) Phylogenetic relationships of the subclass Peritrichia (Oligohymenophorea, Ciliophora) inferred from small subunit rRNA gene sequences. J Eukaryot Microbiol 51: 180-186.
Nearing, J.T., Douglas, G.M., Comeau, A.M., and Langille, M.G.I. (2018) Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches. PeerJ 6: e5364.
Nebel, M., Pfabel, C., Stock, A., Dunthorn, M., and Stoeck, T. (2011) Delimiting operational taxonomic units for assessing ciliate environmental diversity using small-subunit rRNA gene sequences. Environ Microbiol Rep 3: 154-158.
Needham, D.M., Sachdeva, R., and Fuhrman, J.A. (2017) Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J 11: 1614-1629.
Palmer, J.M., Jusino, M.A., Banik, M.T., and Lindner, D.L. (2018) Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6: e4925.
Prosser, J.I. (2010) Replicate or lie. Environ Microbiol 12: 1806-1810.
Quince, C., Lanzén, A., Curtis, T.P., Davenport, R.J., Hall, N., Head, I.M., et al. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6: 639-641.
Quince, C., Lanzen, A., Davenport, R.J., and Turnbaugh, P.J. (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12: 38.
Rand, W.M. (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66: 846-850.
R Core Team (2018) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Reeder, J., and Knight, R. (2010) Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods 7: 668-669.
Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.
Schloss, P.D., Gevers, D., and Westcott, S.L. (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6: e27310.
Schloss, P.D., and Westcott, S.L. (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77: 3219-3226.
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541.
Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M.D.M., Breiner, H.-W., and Richards, T.A. (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19: 21-31.
Stoeck, T., Breiner, H.-W., Filker, S., Ostermaier, V., Kammerlander, B., and Sonntag, B. (2014) A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ Microbiol 16: 430-444.
Sun, Y., Cai, Y., Huse, S.M., Knight, R., Farmerie, W.G., Wang, X., and Mai, V. (2012) A large-scale benchmark study of existing algorithms for taxonomy-independent microbial community analysis. Brief Bioinformatics 13: 107-121.
Tikhonov, M., Leach, R.W., and Wingreen, N.S. (2015) Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J 9: 68-80.
Utter, D.R., Mark Welch, J.L., and Borisy, G.G. (2016) Individuality, stability, and variability of the plaque microbiome. Front Microbiol 7: 564.
Vďačný, P., Breiner, H.-W., Yashchenko, V., Dunthorn, M., Stoeck, T., and Foissner, W. (2014) The chaos prevails: molecular phylogeny of the Haptoria (Ciliophora, Litostomatea). Protist 165: 93-111.
Wang, C., Zhang, T., Wang, Y., Katz, L.A., Gao, F., and Song, W. (2017) Disentangling sources of variation in SSU rDNA sequences from single cell analyses of ciliates: impact of copy number variation and experimental error. Proc R Soc B 284: 20170425.
Worden, A.Z. (2006) Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat Microb Ecol 43: 165-175.
Xue, Z., Kable, M.E., and Marco, M.L. (2018) Impact of DNA sequencing and analysis methods on 16S rRNA gene bacterial community analysis of dairy products. mSphere 3: e00410-e00418.
Zhang, W.-J., Lin, Y.-S., Cao, W.-Q., and Yang, J. (2012) Genetic diversity and variance of Stentor coeruleus (Ciliophora: Heterotrichea) inferred from inter-simple sequence repeat (ISSR) fingerprinting. J Eukaryot Microbiol 59: 157-162.
Zoqratt, M.Z.H.M., Eng, W.W.H., Thai, B.T., Austin, C.M., and Gan, H.M. (2018) Microbiome analysis of Pacific white shrimp gut and rearing water from Malaysia and Vietnam: implications for aquaculture research and management. PeerJ 6: e5826.

Auteurs

Dominik Forster (D)

Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.

Guillaume Lentendu (G)

Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.

Sabine Filker (S)

Department of Molecular Ecology, University of Kaiserslautern, Kaiserslautern, Germany.

Elyssa Dubois (E)

Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.

Thomas A Wilding (TA)

Scottish Association for Marine Science, Scottish Marine Institute, Oban, Scotland, UK.

Thorsten Stoeck (T)

Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH