Exome sequencing of Finnish isolates enhances rare-variant association power.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
08 2019
Historique:
received: 05 11 2018
accepted: 02 07 2019
pubmed: 2 8 2019
medline: 18 12 2019
entrez: 2 8 2019
Statut: ppublish

Résumé

Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power.

Identifiants

pubmed: 31367044
doi: 10.1038/s41586-019-1457-z
pii: 10.1038/s41586-019-1457-z
pmc: PMC6697530
mid: EMS83607
doi:

Substances chimiques

Cholesterol, HDL 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

323-328

Subventions

Organisme : NIDDK NIH HHS
ID : R56 DK062370
Pays : United States
Organisme : NINDS NIH HHS
ID : T32 NS048004
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK062370
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG008853
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL113315
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH105578
Pays : United States
Organisme : Medical Research Council
ID : MR/S019669/1
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : R01 HG006695
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK056341
Pays : United States
Organisme : NINDS NIH HHS
ID : P30 NS062691
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK062370
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL131961
Pays : United States
Organisme : NHGRI NIH HHS
ID : U54 HG003079
Pays : United States

Commentaires et corrections

Type : ErratumIn

Références

Samocha, K. E. et al. Regional missense constraint improves variant deleteriousness prediction. Preprint at https://www.bioRxiv.org/content/10.1101/148353v1 (2017).
Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).
pubmed: 28146470 pmcid: 5302847 doi: 10.1038/nature21039
Flannick, J. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570, 71–76 (2019).
pubmed: 31118516 pmcid: 6699738 doi: 10.1038/s41586-019-1231-2
Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).
pubmed: 29225335 doi: 10.1038/nrg.2017.101
Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA 111, E455–E464 (2014).
pubmed: 24443550 doi: 10.1073/pnas.1322563111 pmcid: 3910587
Xue, Y. et al. Enrichment of low-frequency functional variants revealed by whole-genome sequencing of multiple isolated European populations. Nat. Commun. 8, 15927 (2017).
pubmed: 28643794 pmcid: 5490002 doi: 10.1038/ncomms15927
Southam, L. et al. Whole genome sequencing and imputation in isolated populations identify genetic associations with medically-relevant complex traits. Nat. Commun. 8, 15606 (2017).
pubmed: 28548082 pmcid: 5458552 doi: 10.1038/ncomms15606
Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).
pubmed: 19812666 pmcid: 2831613 doi: 10.1038/nature08494
Jakkula, E. et al. The genome-wide patterns of variation expose significant substructure in a founder population. Am. J. Hum. Genet. 83, 787–794 (2008).
pubmed: 19061986 pmcid: 2668058 doi: 10.1016/j.ajhg.2008.11.005
Polvi, A. et al. The Finnish disease heritage database (FinDis) update—a database for the genes mutated in the Finnish disease heritage brought to the next-generation sequencing era. Hum. Mutat. 34, 1458–1466 (2013).
pubmed: 23904198 doi: 10.1002/humu.22389
Manning, A. et al. A low-frequency inactivating AKT2 variant enriched in the Finnish population is associated with fasting insulin levels and type 2 diabetes risk. Diabetes 66, 2019–2032 (2017).
pubmed: 28341696 pmcid: 5482074 doi: 10.2337/db16-1329
Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).
pubmed: 25078778 pmcid: 4117444 doi: 10.1371/journal.pgen.1004494
Service, S. K. et al. Re-sequencing expands our understanding of the phenotypic impact of variants at GWAS loci. PLoS Genet. 10, e1004147 (2014).
pubmed: 24497850 pmcid: 3907339 doi: 10.1371/journal.pgen.1004147
Würtz, P. et al. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am. J. Epidemiol. 186, 1084–1096 (2017).
pubmed: 29106475 pmcid: 5860146 doi: 10.1093/aje/kwx016
Laakso, M. et al. The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. J. Lipid Res. 58, 481–493 (2017).
pubmed: 28119442 pmcid: 5335588 doi: 10.1194/jlr.O072629
Borodulin, K. et al. Forty-year trends in cardiovascular risk factors in Finland. Eur. J. Public Health 25, 539–546 (2015).
pubmed: 25422363 doi: 10.1093/eurpub/cku174
Abraham, G. et al. Genomic prediction of coronary heart disease. Eur. Heart J. 37, 3267–3278 (2016).
pubmed: 27655226 pmcid: 5146693 doi: 10.1093/eurheartj/ehw450
Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).
pubmed: 19060910 doi: 10.1038/ng.271
Pulizzi, N. et al. Interaction between prenatal growth and high-risk genotypes in the development of type 2 diabetes. Diabetologia 52, 825–829 (2009).
pubmed: 19225753 doi: 10.1007/s00125-009-1291-1
Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13, 397–406 (2014).
pubmed: 24309898 doi: 10.1074/mcp.M113.035600
Corsetti, J. P. et al. Thrombospondin-4 polymorphism (A387P) predicts cardiovascular risk in postinfarction patients with high HDL cholesterol and C-reactive protein levels. Thromb. Haemost. 106, 1170–1178 (2011).
pubmed: 22011848 doi: 10.1160/TH11-03-0206
Zhang, X. J. et al. Association between single nucleotide polymorphisms in thrombospondins genes and coronary artery disease: a meta-analysis. Thromb. Res. 136, 45–51 (2015).
pubmed: 25976449 doi: 10.1016/j.thromres.2015.04.019
Beygo, J. et al. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur. J. Hum. Genet. 25, 935–945 (2017).
pubmed: 28635951 pmcid: 5567157 doi: 10.1038/ejhg.2017.91
Wallace, C. et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat. Genet. 42, 68–71 (2010).
pubmed: 19966805 doi: 10.1038/ng.493
Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).
pubmed: 28436984 pmcid: 5841952 doi: 10.1038/ng.3841
Perry, J. R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).
pubmed: 25231870 pmcid: 4185210 doi: 10.1038/nature13545
Cleaton, M. A. et al. Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat. Genet. 48, 1473–1480 (2016).
pubmed: 27776119 pmcid: 5373434 doi: 10.1038/ng.3699
Chaves, J. A. et al. Genomic variation at the tips of the adaptive radiation of Darwin’s finches. Mol. Ecol. 25, 5282–5295 (2016).
pubmed: 27363308 doi: 10.1111/mec.13743
Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nat. Genet. 47, 589–597 (2015).
pubmed: 25961943 pmcid: 4757735 doi: 10.1038/ng.3300
Ding, Y. et al. Plasma glycine and risk of acute myocardial infarction in patients with suspected stable angina pectoris. J. Am. Heart Assoc. 5, e002621 (2015).
pubmed: 26722126 pmcid: 4859380 doi: 10.1161/JAHA.115.002621
Wittemans, L. B. L. et al. Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nat. Commun. 10, 1060 (2019).
pubmed: 30837465 pmcid: 6400990 doi: 10.1038/s41467-019-08936-1
Perry, R. J. et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).
pubmed: 27279214 pmcid: 4922538 doi: 10.1038/nature18309
Tabbassum, R. et al. Genetics of human plasma lipidome: understanding lipid metabolism and its link to diseases beyond traditional lipids. Preprint at https://www.biorxiv.org/content/10.1101/457960v1 (2018).
Casanova, M. L. et al. Exocrine pancreatic disorders in transsgenic mice expressing human keratin 8. J. Clin. Invest. 103, 1587–1595 (1999).
pubmed: 10359568 pmcid: 408365 doi: 10.1172/JCI5343
Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).
pubmed: 27618447 pmcid: 5056636 doi: 10.1038/ng.3654
Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).
pubmed: 27618448 pmcid: 5320952 doi: 10.1038/ng.3660
Palmer, C. & Pe’er, I. Statistical correction of the winner’s curse explains replication variability in quantitative trait genome-wide association studies. PLoS Genet. 13, e1006916 (2017).
pubmed: 28715421 pmcid: 5536394 doi: 10.1371/journal.pgen.1006916
Norio, R. Finnish Disease Heritage I: characteristics, causes, background. Hum. Genet. 112, 441–456 (2003).
pubmed: 12627295 doi: 10.1007/s00439-002-0875-3
Service, S. et al. Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat. Genet. 38, 556–560 (2006).
pubmed: 16582909 doi: 10.1038/ng1770
Chiang, C. W. K. et al. Genomic history of the Sardinian population. Nat. Genet. 50, 1426–1434 (2018).
pubmed: 30224645 pmcid: 6168346 doi: 10.1038/s41588-018-0215-8
Rivas, M. A. et al. Insights into the genetic epidemiology of Crohn’s and rare diseases in the Ashkenazi Jewish population. PLoS Genet. 14, e1007329 (2018).
pubmed: 29795570 pmcid: 5967709 doi: 10.1371/journal.pgen.1007329
Bastarache, L. et al. Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science 359, 1233–1239 (2018).
pubmed: 29590070 pmcid: 5959723 doi: 10.1126/science.aal4043
Niemi, M. E. K. et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 562, 268–271 (2018).
pubmed: 30258228 pmcid: 6726472 doi: 10.1038/s41586-018-0566-4
Surakka, I. The rate of false polymorphisms introduced when imputing genotypes from global imputation panels. Preprint at https://www.biorxiv.org/content/10.1101/080770v1 (2016).
Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).
pubmed: 25635347 pmcid: 5101938 doi: 10.1056/NEJMp1500523
Stancáková, A. et al. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes 58, 1212–1221 (2009).
pubmed: 19223598 pmcid: 2671053 doi: 10.2337/db08-1607
Borodulin, K. et al. Cohort profile: the National FINRISK Study. Int. J. Epidemiol. 47, 696–696i (2017).
doi: 10.1093/ije/dyx239
Wu, J. et al. A summary of the effects of antihypertensive medications on measured blood pressure. Am. J. Hypertens. 18, 935–942 (2005).
pubmed: 16053990 doi: 10.1016/j.amjhyper.2005.01.011
Tobin, M. D., Sheehan, N. A., Scurrah, K. J. & Burton, P. R. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat. Med. 24, 2911–2935 (2005).
pubmed: 16152135 doi: 10.1002/sim.2165
Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).
pubmed: 29083408 pmcid: 5709146 doi: 10.1038/ng.3977
Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).
pubmed: 4337382 doi: 10.1093/clinchem/18.6.499
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
pubmed: 21478889 pmcid: 3083463 doi: 10.1038/ng.806
Jun, G. et al. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012).
pubmed: 23103226 pmcid: 3487130 doi: 10.1016/j.ajhg.2012.09.004
Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. Bioinformatics 31, 2202–2204 (2015).
pubmed: 25701572 pmcid: 4481842 doi: 10.1093/bioinformatics/btv112
Davis, J. P. et al. Common, low-frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study. PLoS Genet. 13, e1007079 (2017).
pubmed: 29084231 pmcid: 5679656 doi: 10.1371/journal.pgen.1007079
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263 pmcid: 5157836 doi: 10.1038/ng.3656
The Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
doi: 10.1038/ng.3643
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795 pmcid: 4893825 doi: 10.1186/s13059-016-0974-4
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
pubmed: 20354512 pmcid: 2855889 doi: 10.1038/nmeth0410-248
Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553–1561 (2009).
pubmed: 19602639 pmcid: 2752137 doi: 10.1101/gr.092619.109
Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11, 361–362 (2014).
pubmed: 24681721 doi: 10.1038/nmeth.2890
Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).
pubmed: 19561590 doi: 10.1038/nprot.2009.86
Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).
pubmed: 20208533 pmcid: 3092069 doi: 10.1038/ng.548
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
pubmed: 30445434 doi: 10.1093/nar/gky1120
Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).
pubmed: 27005778 pmcid: 4814583 doi: 10.1038/ncomms11122
Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).
pubmed: 22286219 pmcid: 3605033 doi: 10.1038/ng.1073
Teslovich, T. M. et al. Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study. Hum. Mol. Genet. 27, 1664–1674 (2018).
pubmed: 29481666 pmcid: 5905595 doi: 10.1093/hmg/ddy067
Inouye, M. et al. Novel loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet. 8, e1002907 (2012).
pubmed: 22916037 pmcid: 3420921 doi: 10.1371/journal.pgen.1002907
Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).
pubmed: 22863193 pmcid: 3415556 doi: 10.1016/j.ajhg.2012.06.007
Peterson, C. B., Bogomolov, M., Benjamini, Y. & Sabatti, C. Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies. Genet. Epidemiol. 40, 45–56 (2016).
pubmed: 26626037 doi: 10.1002/gepi.21942
Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).
pubmed: 27694958 pmcid: 5096458 doi: 10.1038/ng.3679
Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
pubmed: 19543373 pmcid: 2689936 doi: 10.1371/journal.pgen.1000529
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424 pmcid: 3025716 doi: 10.1093/bioinformatics/btq559
Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).
pubmed: 22291602 pmcid: 3266881 doi: 10.1371/journal.pgen.1002453
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852 pmcid: 4342193 doi: 10.1186/s13742-015-0047-8
Pirinen, M. et al. biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements. Bioinformatics 33, 2405–2407 (2017).
pubmed: 28369165 pmcid: 5860115 doi: 10.1093/bioinformatics/btx166

Auteurs

Adam E Locke (AE)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Karyn Meltz Steinberg (KM)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.

Charleston W K Chiang (CWK)

Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.

Susan K Service (SK)

Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.

Aki S Havulinna (AS)

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
National Institute for Health and Welfare, Helsinki, Finland.

Laurel Stell (L)

Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.

Matti Pirinen (M)

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
Department of Public Health, University of Helsinki, Helsinki, Finland.
Helsinki Institute for Information Technology HIIT and Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.

Haley J Abel (HJ)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.

Colby C Chiang (CC)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.

Robert S Fulton (RS)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.

Anne U Jackson (AU)

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Chul Joo Kang (CJ)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.

Krishna L Kanchi (KL)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.

Daniel C Koboldt (DC)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.

David E Larson (DE)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.

Joanne Nelson (J)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.

Thomas J Nicholas (TJ)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
USTAR Center for Genetic Discovery and Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.

Arto Pietilä (A)

National Institute for Health and Welfare, Helsinki, Finland.

Vasily Ramensky (V)

Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
Federal State Institution "National Medical Research Center for Preventive Medicine" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.

Debashree Ray (D)

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.
Departments of Epidemiology and Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

Laura J Scott (LJ)

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Heather M Stringham (HM)

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Jagadish Vangipurapu (J)

Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland.

Ryan Welch (R)

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Pranav Yajnik (P)

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Xianyong Yin (X)

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.

Johan G Eriksson (JG)

Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland.
Folkhälsan Research Center, Helsinki, Finland.
Department of General Practice and Primary Health Care, University of Helsinki, Helsinki and Helsinki University Hospital, Helsinki, Finland.

Mika Ala-Korpela (M)

Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland.
NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.
Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia.

Marjo-Riitta Järvelin (MR)

Biocenter Oulu, University of Oulu, Oulu, Finland.
Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.
Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland.
Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK.

Minna Männikkö (M)

Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.
Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland.

Hannele Laivuori (H)

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Department of Obstetrics and Gynecology, Tampere University Hospital and University of Tampere, Faculty of Medicine and Health Technology, Tampere, Finland.

Susan K Dutcher (SK)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.

Nathan O Stitziel (NO)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Richard K Wilson (RK)

McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.

Ira M Hall (IM)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.

Chiara Sabatti (C)

Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
Department of Statistics, Stanford University, Stanford, CA, USA.

Aarno Palotie (A)

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
Analytical and Translational Genetics Unit (ATGU), Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Veikko Salomaa (V)

National Institute for Health and Welfare, Helsinki, Finland.

Markku Laakso (M)

Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland.
Department of Medicine, Kuopio University Hospital, Kuopio, Finland.

Samuli Ripatti (S)

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
Department of Public Health, University of Helsinki, Helsinki, Finland.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Michael Boehnke (M)

Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA. boehnke@umich.edu.

Nelson B Freimer (NB)

Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA. nfreimer@mednet.ucla.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH