Exome sequencing of Finnish isolates enhances rare-variant association power.
Alleles
Cholesterol, HDL
/ genetics
Cluster Analysis
Endpoint Determination
Finland
Genetic Association Studies
/ methods
Genetic Predisposition to Disease
/ genetics
Genetic Variation
/ genetics
Geographic Mapping
Humans
Multifactorial Inheritance
/ genetics
Quantitative Trait Loci
/ genetics
Reproducibility of Results
Exome Sequencing
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
05
11
2018
accepted:
02
07
2019
pubmed:
2
8
2019
medline:
18
12
2019
entrez:
2
8
2019
Statut:
ppublish
Résumé
Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power.
Identifiants
pubmed: 31367044
doi: 10.1038/s41586-019-1457-z
pii: 10.1038/s41586-019-1457-z
pmc: PMC6697530
mid: EMS83607
doi:
Substances chimiques
Cholesterol, HDL
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
323-328Subventions
Organisme : NIDDK NIH HHS
ID : R56 DK062370
Pays : United States
Organisme : NINDS NIH HHS
ID : T32 NS048004
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK062370
Pays : United States
Organisme : NHGRI NIH HHS
ID : UM1 HG008853
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL113315
Pays : United States
Organisme : NIMH NIH HHS
ID : U01 MH105578
Pays : United States
Organisme : Medical Research Council
ID : MR/S019669/1
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : R01 HG006695
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK056341
Pays : United States
Organisme : NINDS NIH HHS
ID : P30 NS062691
Pays : United States
Organisme : NIDDK NIH HHS
ID : U01 DK062370
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL131961
Pays : United States
Organisme : NHGRI NIH HHS
ID : U54 HG003079
Pays : United States
Commentaires et corrections
Type : ErratumIn
Références
Samocha, K. E. et al. Regional missense constraint improves variant deleteriousness prediction. Preprint at https://www.bioRxiv.org/content/10.1101/148353v1 (2017).
Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).
pubmed: 28146470
pmcid: 5302847
doi: 10.1038/nature21039
Flannick, J. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570, 71–76 (2019).
pubmed: 31118516
pmcid: 6699738
doi: 10.1038/s41586-019-1231-2
Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).
pubmed: 29225335
doi: 10.1038/nrg.2017.101
Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA 111, E455–E464 (2014).
pubmed: 24443550
doi: 10.1073/pnas.1322563111
pmcid: 3910587
Xue, Y. et al. Enrichment of low-frequency functional variants revealed by whole-genome sequencing of multiple isolated European populations. Nat. Commun. 8, 15927 (2017).
pubmed: 28643794
pmcid: 5490002
doi: 10.1038/ncomms15927
Southam, L. et al. Whole genome sequencing and imputation in isolated populations identify genetic associations with medically-relevant complex traits. Nat. Commun. 8, 15606 (2017).
pubmed: 28548082
pmcid: 5458552
doi: 10.1038/ncomms15606
Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).
pubmed: 19812666
pmcid: 2831613
doi: 10.1038/nature08494
Jakkula, E. et al. The genome-wide patterns of variation expose significant substructure in a founder population. Am. J. Hum. Genet. 83, 787–794 (2008).
pubmed: 19061986
pmcid: 2668058
doi: 10.1016/j.ajhg.2008.11.005
Polvi, A. et al. The Finnish disease heritage database (FinDis) update—a database for the genes mutated in the Finnish disease heritage brought to the next-generation sequencing era. Hum. Mutat. 34, 1458–1466 (2013).
pubmed: 23904198
doi: 10.1002/humu.22389
Manning, A. et al. A low-frequency inactivating AKT2 variant enriched in the Finnish population is associated with fasting insulin levels and type 2 diabetes risk. Diabetes 66, 2019–2032 (2017).
pubmed: 28341696
pmcid: 5482074
doi: 10.2337/db16-1329
Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 10, e1004494 (2014).
pubmed: 25078778
pmcid: 4117444
doi: 10.1371/journal.pgen.1004494
Service, S. K. et al. Re-sequencing expands our understanding of the phenotypic impact of variants at GWAS loci. PLoS Genet. 10, e1004147 (2014).
pubmed: 24497850
pmcid: 3907339
doi: 10.1371/journal.pgen.1004147
Würtz, P. et al. Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am. J. Epidemiol. 186, 1084–1096 (2017).
pubmed: 29106475
pmcid: 5860146
doi: 10.1093/aje/kwx016
Laakso, M. et al. The Metabolic Syndrome in Men study: a resource for studies of metabolic and cardiovascular diseases. J. Lipid Res. 58, 481–493 (2017).
pubmed: 28119442
pmcid: 5335588
doi: 10.1194/jlr.O072629
Borodulin, K. et al. Forty-year trends in cardiovascular risk factors in Finland. Eur. J. Public Health 25, 539–546 (2015).
pubmed: 25422363
doi: 10.1093/eurpub/cku174
Abraham, G. et al. Genomic prediction of coronary heart disease. Eur. Heart J. 37, 3267–3278 (2016).
pubmed: 27655226
pmcid: 5146693
doi: 10.1093/eurheartj/ehw450
Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).
pubmed: 19060910
doi: 10.1038/ng.271
Pulizzi, N. et al. Interaction between prenatal growth and high-risk genotypes in the development of type 2 diabetes. Diabetologia 52, 825–829 (2009).
pubmed: 19225753
doi: 10.1007/s00125-009-1291-1
Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13, 397–406 (2014).
pubmed: 24309898
doi: 10.1074/mcp.M113.035600
Corsetti, J. P. et al. Thrombospondin-4 polymorphism (A387P) predicts cardiovascular risk in postinfarction patients with high HDL cholesterol and C-reactive protein levels. Thromb. Haemost. 106, 1170–1178 (2011).
pubmed: 22011848
doi: 10.1160/TH11-03-0206
Zhang, X. J. et al. Association between single nucleotide polymorphisms in thrombospondins genes and coronary artery disease: a meta-analysis. Thromb. Res. 136, 45–51 (2015).
pubmed: 25976449
doi: 10.1016/j.thromres.2015.04.019
Beygo, J. et al. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur. J. Hum. Genet. 25, 935–945 (2017).
pubmed: 28635951
pmcid: 5567157
doi: 10.1038/ejhg.2017.91
Wallace, C. et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat. Genet. 42, 68–71 (2010).
pubmed: 19966805
doi: 10.1038/ng.493
Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).
pubmed: 28436984
pmcid: 5841952
doi: 10.1038/ng.3841
Perry, J. R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).
pubmed: 25231870
pmcid: 4185210
doi: 10.1038/nature13545
Cleaton, M. A. et al. Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat. Genet. 48, 1473–1480 (2016).
pubmed: 27776119
pmcid: 5373434
doi: 10.1038/ng.3699
Chaves, J. A. et al. Genomic variation at the tips of the adaptive radiation of Darwin’s finches. Mol. Ecol. 25, 5282–5295 (2016).
pubmed: 27363308
doi: 10.1111/mec.13743
Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nat. Genet. 47, 589–597 (2015).
pubmed: 25961943
pmcid: 4757735
doi: 10.1038/ng.3300
Ding, Y. et al. Plasma glycine and risk of acute myocardial infarction in patients with suspected stable angina pectoris. J. Am. Heart Assoc. 5, e002621 (2015).
pubmed: 26722126
pmcid: 4859380
doi: 10.1161/JAHA.115.002621
Wittemans, L. B. L. et al. Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nat. Commun. 10, 1060 (2019).
pubmed: 30837465
pmcid: 6400990
doi: 10.1038/s41467-019-08936-1
Perry, R. J. et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).
pubmed: 27279214
pmcid: 4922538
doi: 10.1038/nature18309
Tabbassum, R. et al. Genetics of human plasma lipidome: understanding lipid metabolism and its link to diseases beyond traditional lipids. Preprint at https://www.biorxiv.org/content/10.1101/457960v1 (2018).
Casanova, M. L. et al. Exocrine pancreatic disorders in transsgenic mice expressing human keratin 8. J. Clin. Invest. 103, 1587–1595 (1999).
pubmed: 10359568
pmcid: 408365
doi: 10.1172/JCI5343
Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).
pubmed: 27618447
pmcid: 5056636
doi: 10.1038/ng.3654
Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).
pubmed: 27618448
pmcid: 5320952
doi: 10.1038/ng.3660
Palmer, C. & Pe’er, I. Statistical correction of the winner’s curse explains replication variability in quantitative trait genome-wide association studies. PLoS Genet. 13, e1006916 (2017).
pubmed: 28715421
pmcid: 5536394
doi: 10.1371/journal.pgen.1006916
Norio, R. Finnish Disease Heritage I: characteristics, causes, background. Hum. Genet. 112, 441–456 (2003).
pubmed: 12627295
doi: 10.1007/s00439-002-0875-3
Service, S. et al. Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies. Nat. Genet. 38, 556–560 (2006).
pubmed: 16582909
doi: 10.1038/ng1770
Chiang, C. W. K. et al. Genomic history of the Sardinian population. Nat. Genet. 50, 1426–1434 (2018).
pubmed: 30224645
pmcid: 6168346
doi: 10.1038/s41588-018-0215-8
Rivas, M. A. et al. Insights into the genetic epidemiology of Crohn’s and rare diseases in the Ashkenazi Jewish population. PLoS Genet. 14, e1007329 (2018).
pubmed: 29795570
pmcid: 5967709
doi: 10.1371/journal.pgen.1007329
Bastarache, L. et al. Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science 359, 1233–1239 (2018).
pubmed: 29590070
pmcid: 5959723
doi: 10.1126/science.aal4043
Niemi, M. E. K. et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 562, 268–271 (2018).
pubmed: 30258228
pmcid: 6726472
doi: 10.1038/s41586-018-0566-4
Surakka, I. The rate of false polymorphisms introduced when imputing genotypes from global imputation panels. Preprint at https://www.biorxiv.org/content/10.1101/080770v1 (2016).
Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).
pubmed: 25635347
pmcid: 5101938
doi: 10.1056/NEJMp1500523
Stancáková, A. et al. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes 58, 1212–1221 (2009).
pubmed: 19223598
pmcid: 2671053
doi: 10.2337/db08-1607
Borodulin, K. et al. Cohort profile: the National FINRISK Study. Int. J. Epidemiol. 47, 696–696i (2017).
doi: 10.1093/ije/dyx239
Wu, J. et al. A summary of the effects of antihypertensive medications on measured blood pressure. Am. J. Hypertens. 18, 935–942 (2005).
pubmed: 16053990
doi: 10.1016/j.amjhyper.2005.01.011
Tobin, M. D., Sheehan, N. A., Scurrah, K. J. & Burton, P. R. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat. Med. 24, 2911–2935 (2005).
pubmed: 16152135
doi: 10.1002/sim.2165
Liu, D. J. et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat. Genet. 49, 1758–1766 (2017).
pubmed: 29083408
pmcid: 5709146
doi: 10.1038/ng.3977
Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).
pubmed: 4337382
doi: 10.1093/clinchem/18.6.499
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
pubmed: 21478889
pmcid: 3083463
doi: 10.1038/ng.806
Jun, G. et al. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012).
pubmed: 23103226
pmcid: 3487130
doi: 10.1016/j.ajhg.2012.09.004
Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. Bioinformatics 31, 2202–2204 (2015).
pubmed: 25701572
pmcid: 4481842
doi: 10.1093/bioinformatics/btv112
Davis, J. P. et al. Common, low-frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study. PLoS Genet. 13, e1007079 (2017).
pubmed: 29084231
pmcid: 5679656
doi: 10.1371/journal.pgen.1007079
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263
pmcid: 5157836
doi: 10.1038/ng.3656
The Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
doi: 10.1038/ng.3643
McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795
pmcid: 4893825
doi: 10.1186/s13059-016-0974-4
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
pubmed: 20354512
pmcid: 2855889
doi: 10.1038/nmeth0410-248
Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553–1561 (2009).
pubmed: 19602639
pmcid: 2752137
doi: 10.1101/gr.092619.109
Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11, 361–362 (2014).
pubmed: 24681721
doi: 10.1038/nmeth.2890
Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).
pubmed: 19561590
doi: 10.1038/nprot.2009.86
Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).
pubmed: 20208533
pmcid: 3092069
doi: 10.1038/ng.548
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
pubmed: 30445434
doi: 10.1093/nar/gky1120
Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).
pubmed: 27005778
pmcid: 4814583
doi: 10.1038/ncomms11122
Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).
pubmed: 22286219
pmcid: 3605033
doi: 10.1038/ng.1073
Teslovich, T. M. et al. Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study. Hum. Mol. Genet. 27, 1664–1674 (2018).
pubmed: 29481666
pmcid: 5905595
doi: 10.1093/hmg/ddy067
Inouye, M. et al. Novel loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet. 8, e1002907 (2012).
pubmed: 22916037
pmcid: 3420921
doi: 10.1371/journal.pgen.1002907
Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).
pubmed: 22863193
pmcid: 3415556
doi: 10.1016/j.ajhg.2012.06.007
Peterson, C. B., Bogomolov, M., Benjamini, Y. & Sabatti, C. Many phenotypes without many false discoveries: error controlling strategies for multitrait association studies. Genet. Epidemiol. 40, 45–56 (2016).
pubmed: 26626037
doi: 10.1002/gepi.21942
Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).
pubmed: 27694958
pmcid: 5096458
doi: 10.1038/ng.3679
Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
pubmed: 19543373
pmcid: 2689936
doi: 10.1371/journal.pgen.1000529
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424
pmcid: 3025716
doi: 10.1093/bioinformatics/btq559
Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).
pubmed: 22291602
pmcid: 3266881
doi: 10.1371/journal.pgen.1002453
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Pirinen, M. et al. biMM: efficient estimation of genetic variances and covariances for cohorts with high-dimensional phenotype measurements. Bioinformatics 33, 2405–2407 (2017).
pubmed: 28369165
pmcid: 5860115
doi: 10.1093/bioinformatics/btx166