Development and characterization of 49 novel microsatellite markers in the African catfish, Clarias gariepinus (Burchell, 1822).


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Dec 2019
Historique:
received: 16 01 2019
accepted: 04 09 2019
pubmed: 20 9 2019
medline: 24 4 2020
entrez: 20 9 2019
Statut: ppublish

Résumé

The African catfish or sharp tooth catfish (Clarias gariepinus) is one of the important species (due to its high environmental tolerance and easily controllable breeding habits) that can significantly contribute to reducing hunger in many countries. It is farmed in numerous African, Asian, and European countries. Moreover, during the last decades its production has grown significantly worldwide. Currently, following the carp, this species is produced in the second largest volume in Hungary. Despite its economic importance, the stocks have been maintained without genetic control or guided breeding. Molecular genetic data on bred populations or strains are very limited. In order to investigate the genetic structure of the stocks, 49 new microsatellite markers were characterized and tested on 32 individuals from a Hungarian farmed stock. All these markers were polymorph. The number of alleles per locus ranged from 2 to 11. The observed and expected overall heterozygosities were between 0.519 and 0.544 respectively and the overall inbreeding coefficient (Fis: 0.063) does not reveal the presence of inbreeding. However, 63% of the markers showed significant deviations from HWE. The results suggest that the maintenance of genetic variation within the stock require high attention in closed bred populations. These new markers provide a useful tool for population and conservation genetics of natural and bred African catfish populations.

Identifiants

pubmed: 31535323
doi: 10.1007/s11033-019-05062-5
pii: 10.1007/s11033-019-05062-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6599-6608

Subventions

Organisme : Országos Tudományos Kutatási Alapprogramok (HU)
ID : K105393
Organisme : Emberi Eroforrások Minisztériuma
ID : FEKUT2019: TUDFO/47138/2019-ITM

Références

FAO (2018) Fishery and Aquaculture Statistics Statistiques des pêches et de l’ aquaculture Estadísticas de pesca y acuicultura. Fao. https://doi.org/10.5860/CHOICE.50-5350
doi: 10.5860/CHOICE.50-5350
Barasa J, Mdyogolo S, Abila R, Grobler PJ, Skilton R, Bindeman H, Njahira NM, Chemoiwa E, Dangasuk OG, Kaunda-Arara B, Verheyen E (2017) Genetic diversity and population structure of the African catfish, Clarias gariepinus (Burchell, 1822) in Kenya: implication for conservation and aquaculture. Belg J Zool. https://doi.org/10.26496/bjz.2017.9
doi: 10.26496/bjz.2017.9
Holmlund CM, Hammer M (2004) Effects of fish stocking on ecosystem services: an overview and case study using the Stockholm archipelago. Environ Manage. https://doi.org/10.1007/s00267-004-0051-8
doi: 10.1007/s00267-004-0051-8 pubmed: 15156349
Chauhan T, Rajiv K (2010) Molecular markers and their applications in fisheries and aquaculture. Adv Biosci Biotechnol. https://doi.org/10.4236/abb.2010.14037
doi: 10.4236/abb.2010.14037
Wachirachaikarn A, Rungsin W, Srisapoome P, Na-Nakorn U (2009) Crossing of African catfish, Clarias gariepinus (Burchell, 1822) strains based on strain selection using genetic diversity data. Aquaculture. https://doi.org/10.1016/j.aquaculture.2009.01.036
doi: 10.1016/j.aquaculture.2009.01.036
Galbusera P, Volckaert FA, Hellemans B, Ollevier F (1996) Isolation and characterization of microsatellite markers in the African catfish Clarias gariepinus (Burchell, 1822). Mol Ecol. https://doi.org/10.1111/j.1365-294X.1996.tb00366.x
doi: 10.1111/j.1365-294X.1996.tb00366.x pubmed: 8873472
Yue GH, Kovacs B, Orban L (2003) Microsatellites from Clarias batrachus and their polymorphism in seven additional catfish species. Mol Ecol Notes. https://doi.org/10.1046/j.1471-8286.2003.00486
doi: 10.1046/j.1471-8286.2003.00486
Yue GH, Kovacs B, Orban L (2010) A new problem with cross-species amplification of microsatellites: generation of non-homologous products. Zool Res 31:131–140
doi: 10.3724/SP.J.1141.2010.02131
Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Methods Enzymol. https://doi.org/10.1016/S0076-6879(05)95013-1
doi: 10.1016/S0076-6879(05)95013-1 pubmed: 15865988
Untergasser A, Nijveen H, Rao X et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm306
doi: 10.1093/nar/gkm306 pubmed: 17485472 pmcid: 1933133
Shimizu M, Kosaka N, Shimada T et al (2002) Universal fluorescent labeling (UFL) method for automated microsatellite analysis. DNA Res. https://doi.org/10.1093/dnares/9.5.173
doi: 10.1093/dnares/9.5.173 pubmed: 12465717
Park SDE (2001) Trypanotolerance in West African cattle and the population genetics effects of selection. Ph.D. thesis, University of Dublin
Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. https://doi.org/10.1093/bioinformatics/bts460
doi: 10.1093/bioinformatics/bts460 pubmed: 22820204 pmcid: 3463245
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) 1996–2004 GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France)
Sekino M, Kakehi S (2012) PARFEX v1.0: an EXCEL TM based software package for parentage allocation. Conserv Genet Res 4(275):278. https://doi.org/10.1007/s12686-011-9523-3
doi: 10.1007/s12686-011-9523-3
Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Not. https://doi.org/10.1111/j.1471-8286.2006.01256.x
doi: 10.1111/j.1471-8286.2006.01256.x
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Not. https://doi.org/10.1111/j.1471-8286.2004.00684.x
doi: 10.1111/j.1471-8286.2004.00684.x pubmed: 15078441
Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, ver. 2.9.3. AN UPDATE FOR Goudet J (1995). FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered. 86:485–186. https://en.bio-soft.net/tree/FSTAT.html
Smouse PE, Whitehead MR, Peakall R (2015) An informational diversity framework, illustrated with sexually deceptive orchids in early stages of speciation. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.12422
doi: 10.1111/1755-0998.12422 pubmed: 25916981
Allendorf F, Luikart G, Aitken S (2013) Conservation and the genetics of populations. Livro. https://doi.org/10.1093/jhered/esl039
doi: 10.1093/jhered/esl039
Endo T, Sekino M, Fujiwara A, Sogabe A (2018) Development and characterization of 19 novel microsatellite markers in the Pacific seaweed pipefish Syngnathus schlegeli using next-generation sequencing. Mol Biol Rep. https://doi.org/10.1007/s11033-018-4396-0
doi: 10.1007/s11033-018-4396-0 pubmed: 30242666
De Woody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x
doi: 10.1111/j.1095-8649.2000.tb00748.x
Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331
pubmed: 6247908 pmcid: 6247908
Ezilrani P, Marimuthu K, Godwin C (2016) Genetic diversity of African catfish clarias gariepinus in south India evaluated by microsatellite DNA. Int J Zool Appl Biosci. https://doi.org/10.5281/zenodo.1310770
doi: 10.5281/zenodo.1310770

Auteurs

Dóra Kánainé Sipos (D)

Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter K. u. 1, 2100, Gödöllő, Hungary.

Katalin Bakos (K)

Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter K. u. 1, 2100, Gödöllő, Hungary.

Ágnes Ősz (Á)

Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter K. u. 1, 2100, Gödöllő, Hungary.

Árpád Hegyi (Á)

Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter K. u. 1, 2100, Gödöllő, Hungary.

Tamás Müller (T)

Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter K. u. 1, 2100, Gödöllő, Hungary.

Béla Urbányi (B)

Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter K. u. 1, 2100, Gödöllő, Hungary.

Balázs Kovács (B)

Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter K. u. 1, 2100, Gödöllő, Hungary. Kovacs.Balazs@mkk.szie.hu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH