Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients.
Bacteremia
/ blood
Diarrhea
/ blood
Drug Resistance, Bacterial
/ genetics
Genetic Variation
/ genetics
Genome, Bacterial
/ genetics
Genomics
Humans
Intensive Care Units
Lactobacillus
/ genetics
Mutation
Phylogeny
Polymorphism, Single Nucleotide
/ genetics
Probiotics
/ adverse effects
Whole Genome Sequencing
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
11 2019
11 2019
Historique:
received:
11
04
2018
accepted:
25
09
2019
pubmed:
9
11
2019
medline:
21
1
2020
entrez:
9
11
2019
Statut:
ppublish
Résumé
Probiotics are routinely administered to hospitalized patients for many potential indications
Identifiants
pubmed: 31700189
doi: 10.1038/s41591-019-0626-9
pii: 10.1038/s41591-019-0626-9
pmc: PMC6980696
mid: NIHMS1540625
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1728-1732Subventions
Organisme : European Research Council
ID : 281891
Pays : International
Organisme : NIGMS NIH HHS
ID : R01 GM081617
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Sarah, H. Y., Jernigan, J. A. & McDonald, L. C. Prevalence of probiotic use among inpatients: a descriptive study of 145 US hospitals. Am. J. Infect. Control 44, 548–553 (2016).
doi: 10.1016/j.ajic.2015.12.001
Szajewska, H. What are the indications for using probiotics in children? Arch. Dis. Child. 101, 398–403 (2016).
doi: 10.1136/archdischild-2015-308656
Barraud, D., Bollaert, P.-E. & Gibot, S. Impact of the administration of probiotics on mortality in critically ill adult patients: a meta-analysis of randomized controlled trials. Chest 143, 646–655 (2013).
doi: 10.1378/chest.12-1745
Barraud, D. et al. Probiotics in the critically ill patient: a double blind, randomized, placebo-controlled trial. Intensive Care Med. 36, 1540–1547 (2010).
doi: 10.1007/s00134-010-1927-0
Honeycutt, T. C. B. et al. Probiotic administration and the incidence of nosocomial infection in pediatric intensive care: a randomized placebo-controlled trial. Pediatr. Crit. Care Med. 8, 452–458 (2007). quiz 464.
doi: 10.1097/01.PCC.0000282176.41134.E6
Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).
doi: 10.1016/j.cell.2018.08.047
Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).
doi: 10.1016/j.cell.2018.08.041
Kunz, A. N., Noel, J. M. & Fairchok, M. P. Two cases of Lactobacillus bacteremia during probiotic treatment of short gut syndrome. J. Pediatr. Gastroenterol. Nutr. 38, 457–458 (2004).
doi: 10.1097/00005176-200404000-00017
Salminen, M. K. et al. Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG. Clin. Infect. Dis. 38, 62–69 (2004).
doi: 10.1086/380455
Thomas, D. W. & Greer, F. R. Clinical report—probiotics and prebiotics in pediatrics. Pediatrics 6, 1217–1231 (2010)
Ghouri, Y. A. et al. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin. Exp. Gastroenterol. 7, 473–487 (2014).
pubmed: 25525379
pmcid: 4266241
Theodorakopoulou, M., Perros, E., Giamarellos-Bourboulis, E. J. & Dimopoulos, G. Controversies in the management of the critically ill: the role of probiotics. Int. J. Antimicrob. Agents 42 (Suppl.), S41–S44 (2013).
doi: 10.1016/j.ijantimicag.2013.04.010
Zhang, G.-Q., Hu, H.-J., Liu, C.-Y., Shakya, S. & Li, Z.-Y. Probiotics for preventing Late-onset sepsis in preterm neonates: a PRISMA-Compliant systematic review and meta-analysis of randomized controlled trials. Medicine 95, e2581 (2016).
doi: 10.1097/MD.0000000000002581
Siempos, I. I., Ntaidou, T. K. & Falagas, M. E. Impact of the administration of probiotics on the incidence of ventilator-associated pneumonia: a meta-analysis of randomized controlled trials. Crit. Care Med. 38, 954–962 (2010).
doi: 10.1097/CCM.0b013e3181c8fe4b
Gu, W.-J., Wei, C.-Y. & Yin, R.-X. Lack of efficacy of probiotics in preventing ventilator-associated pneumonia probiotics for ventilator-associated pneumonia: a systematic review and meta-analysis of randomized controlled trials. Chest 142, 859–868 (2012).
doi: 10.1378/chest.12-0679
Oudhuis, G. J., Bergmans, D. C. J. J. & Verbon, A. Probiotics for prevention of nosocomial infections: efficacy and adverse effects. Curr. Opin. Crit. Care 17, 487–492 (2011).
doi: 10.1097/MCC.0b013e32834a4bab
Lolis, N. et al. Saccharomyces boulardii fungaemia in an intensive care unit patient treated with caspofungin. Crit. Care 12, 414 (2008).
doi: 10.1186/cc6843
Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. J. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72, 728–764 (2008).
doi: 10.1128/MMBR.00017-08
Salminen, M. K. et al. Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clin. Infect. Dis. 35, 1155–1160 (2002).
doi: 10.1086/342912
Chung, H. et al. Global and local selection acting on the pathogen Stenotrophomonas maltophilia in the human lung. Nat. Commun. 8, 14078 (2017).
doi: 10.1038/ncomms14078
Lieberman, T. D. et al. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat. Med. 22, 1470–1474 (2016).
doi: 10.1038/nm.4205
Lieberman, T. D. et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280 (2011).
doi: 10.1038/ng.997
Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA. 103, 8487–8492 (2006).
doi: 10.1073/pnas.0602138103
Watanabe, Y., Cui, L., Katayama, Y., Kozue, K. & Hiramatsu, K. Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J. Clin. Microbiol. 49, 2680–2684 (2011).
doi: 10.1128/JCM.02144-10
Hua, X. et al. Global effect of rpoB mutation on protein expression in Enterococcus faecium. Jundishapur J. Microbiol. 9, e37322 (2016).
doi: 10.5812/jjm.37322
Campbell, E. A. et al. Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J. 24, 674–682 (2005).
doi: 10.1038/sj.emboj.7600499
Enne, V. I., Delsol, A. A., Roe, J. M. & Bennett, P. M. Rifampicin resistance and its fitness cost in Enterococcus faecium. J. Antimicrob. Chemother. 53, 203–207 (2004).
doi: 10.1093/jac/dkh044
Lebeer, S. et al. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl. Environ. Microbiol. 78, 185–193 (2012).
doi: 10.1128/AEM.06192-11
Cai, X.-C. et al. Rifampicin-Resistance mutations in the rpoB Gene in Bacillus velezensis CC09 have pleiotropic effects. Front. Microbiol. 8, 178 (2017).
pubmed: 28243227
pmcid: 5303731
Wi, Y. M. et al. Rifampicin resistance in Staphylococcus epidermidis: molecular characterisation and fitness cost of rpoB mutations. Int. J. Antimicrob. Agents 51, 670–677 (2018).
doi: 10.1016/j.ijantimicag.2017.12.019
Xu, M., Zhou, Y. N., Goldstein, B. P. & Jin, D. J. Cross-resistance of Escherichia coli RNA polymerases conferring rifampin resistance to different antibiotics. J. Bacteriol. 187, 2783–2792 (2005).
doi: 10.1128/JB.187.8.2783-2792.2005
Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).
doi: 10.1371/journal.pone.0128036
Priebe, G. P. et al. The galU Gene of Pseudomonas aeruginosa is required for corneal infection and efficient systemic spread following pneumonia but not for infection confined to the lung. Infect. Immun. 72, 4224–4232 (2004).
doi: 10.1128/IAI.72.7.4224-4232.2004
Lebeer, S., Verhoeven, T. L. A., Perea Vélez, M., Vanderleyden, J. & De Keersmaecker, S. C. J. Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 73, 6768–6775 (2007).
doi: 10.1128/AEM.01393-07
CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. Supplement M100. Wayne, P. A. Clinical and Laboratory Standards Institute (2017).
Mariam, D. H., Mengistu, Y., Hoffner, S. E. & Andersson, D. I. Effect of rpoB mutations conferring rifampin resistance on fitness of mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48, 1289–1294 (2004).
doi: 10.1128/AAC.48.4.1289-1294.2004
Wylie, M. C. et al. Risk factors for central line–associated bloodstream infection in pediatric intensive care units. Infect. Control Hosp. Epidemiol. 31, 1049–1056 (2010).
doi: 10.1086/656246
De Groote, M. A., Frank, D. N., Dowell, E., Glode, M. P. & Pace, N. R. Lactobacillus rhamnosus GG bacteremia associated with probiotic use in a child with short gut syndrome. Pediatr. Infect. Dis. J. 24, 278–280 (2005).
doi: 10.1097/01.inf.0000154588.79356.e6
Ledoux, D., Labombardi, V. J. & Karter, D. Lactobacillus acidophilus bacteraemia after use of a probiotic in a patient with AIDS and hodgkin’s disease. Int. J. STD AIDS 17, 280–282 (2006).
doi: 10.1258/095646206776253507
Gouriet, F., Million, M., Henri, M., Fournier, P.-E. & Raoult, D. Lactobacillus rhamnosus bacteremia: an emerging clinical entity. Eur. J. Clin. Microbiol. Infect. Dis. 31, 2469–2480 (2012).
doi: 10.1007/s10096-012-1599-5
See, I. et al. Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new national healthcare safety network definition. Infect. Control Hosp. Epidemiol. 34, 769–776 (2013).
doi: 10.1086/671281