Identification of quantitative trait loci for net form net blotch resistance in contemporary barley breeding germplasm from the USA using genome-wide association mapping.
Alleles
Ascomycota
/ pathogenicity
Chromosome Mapping
Chromosomes, Plant
Disease Resistance
/ genetics
Genetic Markers
Genome-Wide Association Study
Genotype
Hordeum
/ genetics
Linkage Disequilibrium
Phenotype
Plant Breeding
Plant Diseases
/ genetics
Polymorphism, Single Nucleotide
Quantitative Trait Loci
Seedlings
/ genetics
Journal
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600
Informations de publication
Date de publication:
Mar 2020
Mar 2020
Historique:
received:
20
09
2019
accepted:
26
12
2019
pubmed:
5
1
2020
medline:
20
11
2020
entrez:
5
1
2020
Statut:
ppublish
Résumé
Association mapping study conducted in a population of 3490 elite barley breeding lines from ten barley breeding programs of the USA identified 12 QTLs for resistance/susceptibility to net form of net blotch. Breeding resistant varieties is the best management strategy for net form of net blotch (NFNB) in barley (Hordeum vulgare L.) caused by Pyrenophora teres f. teres (Ptt). Several resistance QTL have been previously identified in barley via linkage mapping and genome-wide association studies (GWAS). A GWAS conducted in a collection of advanced breeding lines (n = 3490) representing elite germplasm from ten barley breeding programs of the USA identified 42 unique marker-trait associations (MTA) for NFNB resistance. The lines were genotyped with 3072 SNP markers and phenotyped with four Ptt isolates in controlled environment. The lines were used to construct 13 different GWAS panels. Efficient mixed model association method with principal components and kinship was used for GWAS. Significance threshold for MTA was set at a false discovery rate of 0.05. Two, eight, six, one and 25 MTA were identified in chromosomes 1H, 3H, 4H, 5H and 6H, respectively. Based on genetic positions and linkage disequilibrium, these MTA's correspond to two, three, two, one and four QTLs in chromosome 1H, 3H, 4H, 5H and 6H, respectively. A comparison with previous linkage and GWAS studies revealed several previously identified and novel QTLs. Moreover, different genomic regions were found to be responsible for NFNB resistance in two-row versus six-row germplasm. The germplasm-specific SNP markers with additive effects and allelic distribution is reported to facilitate breeders in selection of markers for MAS to introgress novel net blotch resistance.
Identifiants
pubmed: 31900499
doi: 10.1007/s00122-019-03528-5
pii: 10.1007/s00122-019-03528-5
doi:
Substances chimiques
Genetic Markers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1019-1037Références
Adhikari A, Steffenson BJ, Smith MJ, Dill-Macky R (2019) Genome-wide association mapping of seedling net form net blotch resistance in an Ethiopian and Eritrean Barley Collection. Crop Sci 59:1625–1638
Afanasenko OS, Marja J, Pinnschmidt HO, Filatova O, Platz GJ (2009) Development of an international standard set of barley differential genotypes for Pyrenophora teres f. teres. Plant Pathol 58:665–676
Amezrou R, Verma RPS, Chao S, Brueggeman RS, Belqadi L, Arbaoui M, Rehman S, Gyawali S (2018) Genome-wide association studies of net form of net blotch resistance at seedling and adult plant stages in spring barley collection. Mol Breed 38:1–14
Barleymap. http://floresta.eead.csic.es/barleymap
Berger GL, Liu S, Hall MD, Brooks WS, Chao S, Muehlbauer GJ, Baik B-K, Steffenson B, Griffey CA (2013) Marker-trait associations in Virginia Tech winter barley identified using genome-wide mapping. Theor Appl Genet 126:693–710
pubmed: 23139143
Bockelman H, Sharp E, Eslick R (1977) Trisomic analysis of genes for resistance to scald and net blotch in several barley cultivars. Can J Bot 55:2142–2148
Cakir M, Gupta S, Platz G, Ablett GA, Loughman R, Emebiri L, Poulsen D, Li C, Lance R, Galwey N (2003) Mapping and validation of the genes for resistance to Pyrenophora teres f. teres in barley (Hordeum vulgare L.). Crop Pasture Sci 54:1369–1377
Cantalapiedra CP, Boudiar R, Casas AM, Igartua E, Contreras-Moreira B (2015) BARLEYMAP: physical and genetic mapping of nucleotide sequences and annotation of surrounding loci in barley. Mol Breed 35:13
Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582
Daba SD, Horsley R, Brueggeman R, Chao S, Mohammadi M (2019) Genome-wide association studies and candidate gene identification for leaf scald and net blotch in barley (L.) Plant Dis 103:880–889
pubmed: 30806577
Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255
Friesen T, Faris J, Lai Z, Steffenson B (2006) Identification and chromosomal location of major genes for resistance to Pyrenophora teres in a doubled-haploid barley population. Genome 49:855–859
pubmed: 16936794
Grewal T, Rossnagel B, Pozniak C, Scoles G (2008) Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116:529–539
pubmed: 18071668
Hamblin MT, Close TJ, Bhat PR, Chao S, Kling JG, Abraham KJ, Blake T, Brooks WS, Cooper B, Griffey CA, Hayes PM, Hole DJ, Horsley RD, Obert DE, Smith KP, Ullrich SE, Muehlbauer GJ, Jannink J-L (2010) Population structure and linkage disequilibrium in US barley germplasm: implications for association mapping. Crop Sci 50:556–566
Jordan V (1981) Aetiology of barley net blotch caused by Pyrenophora teres and some effects on yield. Plant Pathol 30:77–87
Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723
pubmed: 2278096
pmcid: 2278096
Khan T (1987) Relationship between net blotch (Drechslera teres) and losses in grain yield of barley in Western Australia. Crop Pasture Sci 38:671–679
Koladia VM, Faris JD, Richards JK, Brueggeman RS, Chao S, Friesen TL (2017) Genetic analysis of net form net blotch resistance in barley lines CIho 5791 and Tifang against a global collection of P. teres f. teres isolates. Theor Appl Genet 130:163–173
pubmed: 27734097
pmcid: 27734097
Lehmensiek A, Platz G, Mace E, Poulsen D, Sutherland M (2008) Mapping of adult plant resistance to net form of net blotch in three Australian barley populations. Crop Pasture Sci 58:1191–1197
Liu Z, Ellwood SR, Oliver RP, Friesen TL (2011) Pyrenophora teres: profile of an increasingly damaging barley pathogen. Mol Plant Pathol 12:1–19
pubmed: 21118345
Ma Z, Lapitan NL, Steffenson B (2004) QTL mapping of net blotch resistance genes in a doubled-haploid population of six-rowed barley. Euphytica 137:291–296
Manninen O, Kalendar R, Robinson J, Schulman A (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334
pubmed: 11085273
Manninen O, Jalli M, Kalendar R, Schulman A, Afanasenko O, Robinson J (2006) Mapping of major spot-type and net-type net-blotch resistance genes in the Ethiopian barley line CI 9819. Genome 49:1564–1571
pubmed: 17426771
Martens JW, Seaman WL, Atkinson TG (1988) Disease of field crops in Canada. An illustrated compendium. Can Phytopathol Soc (Revised edition)
Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Muñoz-Amatriaín M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727
pubmed: 23998490
pmcid: 23998490
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433
pubmed: 28447635
Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer G, Smith K (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454
McLean MS, Howlett BJ, Hollaway GJ (2009) Erratum to: epidemiology and control of spot form of net blotch (Pyrenophora teres f. maculata) of barley: a review. Crop Pasture Sci 60:499
Mohammadi M, Endelman JB, Nair S, Chao S, Jones SS, Muehlbauer GJ, Ullrich SE, Baik B-K, Wise ML, Smith KP (2014) Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol Breed 34:1229–1243
Mohammadi M, Blake TK, Budde AD, Chao S, Hayes PM, Horsley RD, Obert DE, Ullrich SE, Smith KP (2015) A genome-wide association study of malting quality across eight US barley breeding programs. Theor Appl Genet 128:705–721
pubmed: 25666272
Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249
Novakazi F, Afanasenko O, Anisimova A, Platz GJ, Snowdon R, Kovaleva O, Zubkovich A, Ordon F (2019) Genetic analysis of a worldwide barley collection for resistance to net form of net blotch disease (Pyrenophora teres f. teres). Theor Appl Genet 132:2633–2650
pubmed: 31209538
Pauli D, Muehlbauer GJ, Smith KP, Cooper B, Hole D, Obert DE, Ullrich SE, Blake TK (2014) Association mapping of agronomic QTLs in US spring barley breeding germplasm. Plant Genome 7:3
Pierre SS, Gustus C, Steffenson B, Dill-Macky R, Smith KP (2010) Mapping net form net blotch and Septoria speckled leaf blotch resistance loci in Barley. Phytopathology 100:80–84
R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180
pubmed: 20089441
Richards J, Chao S, Friesen T, Brueggeman R (2016) Fine mapping of the barley chromosome 6H net form net blotch susceptibility locus. G3-Genes Genom Genet 6:1809–1818
Richards JK, Friesen TL, Brueggeman RS (2017) Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci. Theor Appl Genet 130:915–927
pubmed: 28184981
Rozanova IV, Lashina NM, Mustafin ZS, Gorobets SA, Efimov VM, Afanasenko OS, Khlestkina EK (2019) SNPs associated with barley resistance to isolates of Pyrenophora teres f. teres. BMC Genomics 20(3):292
pubmed: 32039701
Serenius M, Mironenko N, Manninen O (2005) Genetic variation, occurrence of mating types and different forms of Pyrenophora teres causing net blotch of barley in Finland. Mycol Res 109:809–817
pubmed: 16121567
Sneller C, Mather D, Crepieux S (2009) Analytical approaches and population types for finding and utilizing QTL in complex plant populations. Crop Sci 49:363–380
Steffenson B (1997) Compendium of barley diseases
Steffenson BJ, Smith KP (2006) Breeding barley for multiple disease resistance in the Upper Midwest region of the USA. Czech J Genet Plant Breed 42:79
Steffenson B, Hayes P, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in Barley. Theor Appl Genet 92:552–558
pubmed: 24166322
Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci 100:9440–9445
pubmed: 12883005
Tekauz A (1985) A numerical scale to classify reactions of barley to Pyrenophora teres. Can J Plant Pathol 7:181–183
Wonneberger R, Ficke A, Lillemo M (2017) Identification of quantitative trait loci associated with resistance to net form net blotch in a collection of Nordic barley germplasm. Theor Appl Genet 130:2025–2043
pubmed: 28653151
Triticeae Coordinated Agricultural Project. https://triticeaecap.org/
Triticeae Coordinated Agricultural Project, T3 Barley Toolbox database. https://triticeaetoolbox.org/barley/
Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160
pubmed: 16504497
Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208
pubmed: 16380716
Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421
Zhou H, Steffenson B (2013a) Genome-wide association mapping reveals genetic architecture of durable spot blotch resistance in US barley breeding germplasm. Mol Breed 32:139–154
Zhou H, Steffenson BJ (2013b) Association mapping of septoria speckled leaf blotch resistance in US barley breeding germplasm. Phytopathology 103:600–609
pubmed: 23342987
Zhou H, Steffenson B, Muehlbauer G, Wanyera R, Njau P, Ndeda S (2014) Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm. Theor Appl Genet 127:1293–1304
pubmed: 24710821
pmcid: 4035542
Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20