Overexpression of stilbene synthase genes to modulate the properties of plants and plant cell cultures.


Journal

Biotechnology and applied biochemistry
ISSN: 1470-8744
Titre abrégé: Biotechnol Appl Biochem
Pays: United States
ID NLM: 8609465

Informations de publication

Date de publication:
Feb 2021
Historique:
received: 13 08 2019
accepted: 30 12 2019
pubmed: 12 1 2020
medline: 7 7 2021
entrez: 12 1 2020
Statut: ppublish

Résumé

Plant stilbenes have attracted special attention as they possess valuable health benefits and improve plant resistance to environmental stresses. Stilbenes are synthesized via the phenylpropanoid pathway, where stilbene synthase (STS, EC 2.3.1.95) directly catalyzes the formation of t-resveratrol (monomeric stilbene). This review discusses the features of using STS genes in genetic engineering and plant biotechnology with the purpose to increase plant resistance to environmental stresses and to modify secondary metabolite production.

Identifiants

pubmed: 31925968
doi: 10.1002/bab.1884
doi:

Substances chimiques

Plant Proteins 0
Acyltransferases EC 2.3.-
stilbene synthase EC 2.3.1.-
Resveratrol Q369O8926L

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

13-19

Subventions

Organisme : Russian Foundation for Basic Research
ID : 19-04-00063

Informations de copyright

© 2020 International Union of Biochemistry and Molecular Biology, Inc.

Références

>Dubrovina,
Kalantari, H., and Das, D. K. (2010) Physiological effects of resveratrol. Biofactors 36, 401-406.
Kiselev, K. V. (2011) Perspectives for production and application of resveratrol. Appl. Microbiol. Biotechnol. 90, 417-425.
Pangeni, R., Sahni, J. K., Ali, J., Sharma, S., and Baboota, S. (2014) Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin. Drug Deliv. 11, 1285-1298.
Xu, L., Liu, C., Xiang, W., Chen, H., Qin, X. L., and Huang, X. Z. (2014) Advances in the study of oxyresveratrol. Int. J. Prosthodont. 10, 44-54.
Wang, X. F., and Yao, C. S. (2016) Naturally active oligostilbenes. J. Asian Nat. Prod. Res. 18, 376-407.
Weiskirchen, S., and Weiskirchen, R. (2016) Resveratrol: how much wine do you have to drink to stay healthy? Adv. Nutr. 7, 706-718.
Chong, J., Poutaraud, A., and Hugueney, P. (2009) Metabolism and roles of stilbenes in plants. Plant Sci. 117, 143-155.
Jeandet, P., Delaunois, B., Conreux, A., Donnez, D., Nuzzo, V., Cordelier, S., Clément, C., and Courot, E. (2010) Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. Biofactors 36, 331-341.
He, X. C., Xue, F. Y., Zhang, L. L., Guo, H. L., Ma, L. Q., and Yang, M. F. (2018) Overexpressing fusion proteins of 4-coumaroyl-CoA ligase (4CL) and stilbene synthase (STS) in tobacco plants leading to resveratrol accumulation and improved stress tolerance. Plant Biotechnol. Rep. 12, 295-302.
Ferrer, J. L., Austin, M. B., Stewart, C., and Noe, J. P. (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46, 356-370.
Austin, M. B., Bowman, M. E., Ferrer, J. L., Schroder, J., and Noel, J. P. (2004) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem. Biol. 11, 1179-1194.
Austin, M. B., and Noel, J. P. (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79e110.
Vannozzi, A., Dry, I. B., Fasoli, M., Zenoni, S., and Lucchin, M. (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol. 12, 130.
Sparvoli, F., Martin, C., Scienza, A., Gavazzi, G., and Tonelli, C. (1994) Cloning andmolecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol. Biol. 24, 743-755.
Richter, H., Pezet, R., Viret, O., and Gindro, K. (2005) Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol. Mol. Plant Pathol. 67, 248-260.
Dubrovina, A. S., Manyakhin, A. Y., Zhuravlev, Y. N., and Kiselev, K. V. (2010) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in rolC transgenic cell cultures of Vitis amurensis. Appl. Microbiol. Biotechnol. 88, 727-736.
Hammerbacher, A., Ralph, S. G., Bohlmann, J., Fenning, T. M., Gershenzon, J., and Schmidt, A. (2011) Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol. 157, 876-890.
Kiselev, K. V., Dubrovina, A. S., Veselova, M. V., Bulgakov, V. P., Fedoreyev, S. A., and Zhuravlev Y. N. (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J. Biotechnol. 128, 681-692.
Kiselev, K. V., Dubrovina, A. S., Isaeva, G. A., and Zhuravlev, Y. N. (2010) The effect of salicylic acid on phenylalanine ammonia-lyase and stilbene synthase gene expression in Vitis amurensis cell culture. Russ. J. Plant Physiol. 57, 415-448.
Kiselev, K. V., Grigorchuk, V. P., Ogneva, Z. V., Suprun, A. R., and Dubrovina, A. S. (2016) Stilbene biosynthesis in the needles of spruce Picea jezoensis. Phytochemistry 131, 57-67.
Kiselev, K. V., Aleynova, O. A., Grigorchuk, V. P., and Dubrovina, A. S. (2017a) Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta 245, 151-159.
Kiselev, K. V., Aleynova, O. A., and Tyunin, A. P. (2017b) Expression of the R2R3 MYB transcription factors in Vitis amurensis Rupr. plants and cell cultures with different resveratrol content. Russ. J. Genet. 53, 465-471.
Kiselev, K. V., Ogneva, Z. V., Suprun, A. R., Grigorchuk, V. P., and Dubrovina, A. S. (2019a) Action of ultraviolet-C radiation and p-coumaric acid on stilbene accumulation and expression of stilbene biosynthesis-related genes in the grapevine Vitis amurensis Rupr. Acta Physiol. Plant. 41, 28.
Kiselev, K. V., Grigorchuk, V. P., Ogneva, Z. V., Suprun, A. R., and Dubrovina, A. S. (2019b) The effect of ultraviolet-C and precursor feeding on stilbene biosynthesis in spruce Picea jezoensis. J. Plant Physiol. 234-235, 133-137.
Houille, B., Besseau, S., Delanoue, G., Oudin, A., Papon, N., Clastre, M., Simkin, A. J., Guérin, L., Courdavault, V., Giglioli-Guivarc'h, N., and Lanoue, A. (2015) Composition and tissue-specific distribution of stilbenoids in grape canes are affected by downy mildew pressure in the vineyard. J. Agric. Food Chem. 63, 8472-8477.
Xu, A., Zhan, J. C., and Huang, W. D. (2015) Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tissue Organ Cult. 122, 197-211.
Flamini, R., Zanzotto, A., de Rosso, M., Lucchetta, G., Vedova, A. D., and Bavaresco, L. (2016) Stilbene oligomer phytoalexins in grape as a response to Aspergillus carbonarius infection. Physiol. Mol. Plant Pathol. 93, 112-118.
Tyunin, A. P., and Kiselev, K. V. (2016) Alternations in VaSTS gene cytosine methylation and t-resveratrol production in response to UV-C irradiation in Vitis amurensis Rupr. cells. Plant Cell Tissue Organ Cult. 124, 33-45.
Martins, V., Garcia, A., Costa, C., Sottomayor, M., and Geros, H. (2018) Calcium- and hormone-driven regulation of secondary metabolism and cell wall enzymes in grape berry cells. J. Plant Physiol. 231, 57-67.
Tyunin, A. P., Nityagovsky, N. N., Grigorchuk, V. P., and Kiselev, K. V. (2018) Stilbene content and expression of stilbene synthase genes in cell cultures of Vitis amurensis treated with cinnamic and caffeic acids. Biotechnol. Appl. Biochem. 65, 150-155.
Fischer, R., Budde, I., and Hain, R. (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J. 11, 489-498.
Kobayashi, S., Ding, C. K., Nakamura, Y., Nakajima, I., and Matsumoto, R. (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep. 19, 904-910.
Giorcelli, A., Sparvoli, F., Mattivi, F., Tava, A., Balestrazzi, A., Vrhovsek, U., Calligari, P., Bollini, R., and Confalonieri, M. (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res. 13, 203-214.
Husken, A., Baumert, A., Milkowski, C., Becker, H. C., Strack, D., and Mollers, C. (2005) Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor. Appl. Genet. 111, 1553-1562.
Yu, C. K. Y., Lam, C. N. W., Springob, K., Schmidt, J., Chu, I. K., and Lo, C. (2006) Constitutive accumulation of cis-piceid in transgenic arabidopsis overexpressing a sorghum stilbene synthase gene. Plant Cell Physiol. 47, 1017-1021.
Lo, C., Le Blanc, J. C. Y., Yu, C. K. Y., Sze, K. H., Ng, D. C. M., and Chu, I. K. (2007) Detection, characterization, and quantification of resveratrol glycosides in transgenic Arabidopsis over-expressing a sorghum stilbene synthase gene by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21, 4101-4108.
Liu, Z., Zhuang, C., Sheng, S., Shao, L., Zhao, W., and Zhao, S. (2011) Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. Plant Cell Rep. 30, 2027-2036.
Schijlen, E., de Vos, C. H. R., Jonker, H., van den Broeck, H., Molthoff, J., van Tunen, A., Martens, S., and Bovy, A. (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol. J. 4, 433-444.
Schwekendiek, A., Spring, O., Heyerick, A., Pickel, B., Pitsch, N. T., Peschke, F., de Keukeleire, D., and Weber, G. (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities. J. Agric. Food Chem. 55, 7002-7009.
Luo, Z., Guo, H., Yang, Y., Yang, M., Ma, L., and Wang, Y. (2015) Heterologous overexpression of resveratrol synthase (PcPKS5) gene enhances antifungal and mite aversion by resveratrol accumulation. Eur. J. Plant Pathol. 142, 547-556.
Hanhineva, K., Kokko, H., Siljanen, H., Rogachev, I., Aharoni, A., and Karenlampi, S. O. (2009) Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragariaxananassa). J. Exp. Bot. 60, 2093-2106.
Kiselev, K. V., and Aleynova, O. A. (2016) Influence of overexpression of stilbene synthase VaSTS7 gene on resveratrol production in transgenic cell cultures of grape Vitis amurensis Rupr. Appl. Microbiol. Biotechnol. 52, 56-60.
Aleynova, O. A., Grigorchuk, V. P., Dubrovina, A. S., Rybin, V. G., and Kiselev, K. V. (2016) Stilbene accumulation in cell cultures of Vitis amurensis Rupr. overexpressing VaSTS1, VaSTS2, and VaSTS7 genes. Plant Cell Tissue Organ Cult. 125, 329-339.
Chu, M., Pedreno, M. A., Alburquerque, N., Faize, L., Burgos, L., and Almagro, L. (2017) A new strategy to enhance the biosynthesis of trans-resveratrol by overexpressing stilbene synthase gene in elicited Vitis vinifera cell cultures. Plant Physiol. Biochem. 113, 141-148.
Hidalgo, D., Martinez-Marquez, A., Cusido, R., Bru-Martinez, R., Palazon, J., and Corchete, P. (2017) Silybum marianum cell cultures stably transformed with Vitis vinifera stilbene synthase accumulate t-resveratrol in the extracellular medium after elicitation with methyl jasmonate or methylated beta-cyclodextrins. Eng. Life Sci. 17, 686-694.
Suprun, A. R., Ogneva, Z. V., Dubrovina, A. S., and Kiselev, K. V. (2019) The effect of the spruce PjSTS1a, PjSTS2, or PjSTS3 gene overexpression on stilbene biosynthesis in callus cell cultures of Vitis amurensis Rupr. Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.1839.
Rajeevkumar, S., Anunanthini, P., and Sathishkumar, R. (2015) Epigenetic silencing in transgenic plants. Front. Plant Sci. 6, 693.
Wang, L., Xu, M., Liu, C., Wang, J., Xi, H., Wu, B., Loescher, W., Duan, W., Fan, P., and Li, S. (2013) Resveratrols in grape berry skins and leaves in Vitis germplasm. PLoS One 8, e61642.
Schmidlin, L., Poutaraud, A., Claudel, P., Mestre, P., Prado, E., Santos-Rosa, M., Wiedemann-Merdinoglu, S., Karst, F., Merdinoglu, D., and Hugueney, P. (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol. 148, 1630-1639.
Wang, W., Tang, K., Yang, H. R., Wen, P. F., Zhang, P., Wang, H. L., and Huang, W. D. (2010) Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol. Biochem. 48, 142-152.
Kiselev, K. V., Aleynova, O. A., Grigorchuk, V. P., and Dubrovina, A. S. (2017) Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta 245, 151-159.
Kalli, E., Lappa, I., Bouchagier, P., Tarantilis P. A., and Skotti E. (2018) Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess. 5, 46.
Tian Y., Wang Y., Ma Y., Zhu P., He J., and Lei J. (2017) Optimization of subcritical water extraction of resveratrol from grape seeds by response surface methodology. Appl. Sci. 7, 321.

Auteurs

Konstantin V Kiselev (KV)

Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia.

Alexandra S Dubrovina (AS)

Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant

Classifications MeSH