One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide.
Firmicutes
Negativicutes
cell envelope
evolution
outer membrane
Journal
Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028
Informations de publication
Date de publication:
03 2020
03 2020
Historique:
received:
19
11
2019
revised:
15
01
2020
accepted:
17
01
2020
pubmed:
25
1
2020
medline:
21
11
2020
entrez:
25
1
2020
Statut:
ppublish
Résumé
How, when and why the transition between cell envelopes with one membrane (Gram-positives or monoderms) and two (Gram-negative or diderms) occurred in Bacteria is a key unanswered question in evolutionary biology. Different hypotheses have been put forward, suggesting that either the monoderm or the diderm phenotype is ancestral. The existence of diderm members in the classically monoderm Firmicutes challenges the Gram-positive/Gram-negative divide and provides a great opportunity to tackle the issue. In this review, we present current knowledge on the diversity of bacterial cell envelopes, including these atypical Firmicutes. We discuss how phylogenomic analysis supports the hypothesis that the diderm cell envelope architecture is an ancestral character in the Firmicutes, and that the monoderm phenotype in this phylum arose multiple times independently by loss of the outer membrane. Given the overwhelming distribution of diderm phenotypes with respect to monoderm ones, this scenario likely extends to the ancestor of all bacteria. Finally, we discuss the recent development of genetic tools for Veillonella parvula, a diderm Firmicute member of the human microbiome, which indicates it as an emerging new experimental model to investigate fundamental aspects of the diderm/monoderm transition.
Substances chimiques
Lipopolysaccharides
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
659-671Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I., & Dewhirst, F. E. (2005). Defining the normal bacterial flora of the oral cavity. Journal of Clinical Microbiology, 43, 5721-5732.
Abby, S. S., Cury, J., Guglielmini, J., Néron, B., Touchon, M., & Rocha, E. P. (2016). Identification of protein secretion systems in bacterial genomes. Scientific Reports, 6, 23080. https://doi.org/10.1038/srep23080
Acosta, F., Ferreras, E., & Berenguer, J. (2012). The β-barrel assembly machinery (BAM) is required for the assembly of a primitive S-layer protein in the ancient outer membrane of Thermus thermophilus. Extremophiles: Life Under Extreme Conditions, 16(6), 853-861. https://doi.org/10.1007/s00792-012-0480-x
Adam, P. S., Borrel, G., Borchier-Armanet, C., & Gribaldo, S. (2017). The growing tree of Archaeae: New perspectives on their diversity, evolution and ecology. ISME Journal, 11(11), 2407-2425.
Antunes, L. C., Poppleton, D., Klingl, A., Dupuy, B., Brochier-Armanet, C., Beloin, C., & Gribaldo, S. (2016). Phylogenomic analysis supports the ancestral presence of LPS outer membranes in the Firmicutes. Elife, 5, e14589.
Arrieta, M. C., Stiemsma, L. T., Dimitriu, P. A., Thorson, L., Russell, S., Yurist-Doutsch, S., … Finlay, B. B. (2015). Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine, 7(307), 307ra152.
Bladen, H. A., & Mergenhagen, S. E. (1964). Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity. Journal of Bacteriology, 88, 1482-1492.
Braun, V., & Rehn, K. (1969). Chemical characterization, spatial distribution and function of a lipoprotein (mureinlipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. European Journal of Biochemistry, 10, 426-438.
Brock, T. D., & Edwards, M. R. (1970). Fine structure of Thermus aquaticus, an extreme thermophile. Journal of Bacteriology, 104(1), 509-517. https://doi.org/10.1128/JB.104.1.509-517.1970
Bulach, D. M., Kalambaheti, T., de la Peña-Moctezuma, A., & Adler, B. (2000). Lipopolysaccharide biosynthesis in Leptospira. Journal of Molecular Microbiology and Biotechnology, 2(4), 375-380.
Campbell, C., Adeolu, M., & Gupta, R. S. (2015). Genome-based taxonomic framework for the class Negativicutes: Division of the class Negativicutes into the orders Selenomonadales emend., Acidaminococcales ord. nov. and Veillonellales ord. nov. International Journal of Systematic and Evolutionary Microbiology, 65, 3203-3215. https://doi.org/10.1099/ijs.0.000347
Campbell, C., Sutcliffe, I. C., & Gupta, R. S. (2014). Comparative proteome analysis of Acidaminococcus intestini supports a relationship between outer membrane biogenesis in Negativicutes and Proteobacteria. Archives of Microbiology, 196, 307-310.
Cascales, E., Bernadac, A., Gavioli, M., Lazzaroni, J., Lloubes, R., Lyon, C. B., & Cedex, V. (2002). Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. Journal of Bacteriology, 184, 754-759.
Cavalier-Smith, T. (2002). The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. International Journal of Systematic and Evolutionary Microbiology, 52, 7-76.
Cavalier-Smith, T. (2006). Rooting the tree of life by transition analyses. Biol Direct, 1, 19.
Chalmers, N. I., Palmer, R. J. Jr, Cisar, J. O., & Kolenbrander, P. E. (2008). Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque. Journal of Bacteriology, 190(24), 8145-8154.
Cullen, P. A., Haake, D. A., & Adler, B. (2004). Outer membrane proteins of pathogenic spirochetes. FEMS Microbiology Reviews, 28(3), 291-318. https://doi.org/10.1016/j.femsre.2003.10.004
Damé-Teixieira, N., Parolo, C. C. F., Maltz, M., Rup, A. G., Devine, D. A., & Do, T. (2018). Gene expression of bacterial collagenolytic proteases in root caries. Journal of Oral Microbiology, 10(1), 1424475.
Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C. R., Yu, W. H., … Wade, W. G. (2010). The human oral microbiome. Journal of Bacteriology, 192(19), 5002-5017.
Errington, J. (2013). L-form bacteria, cell walls and the origins of life. Open biology, 3(1), 120143.
Gibbons, N. E., & Murray, R. G. E. (1978). Proposals concerning the higher taxa of bacteria. International Journal of Systematic Bacteriology, 28, 1-6. https://doi.org/10.1099/00207713-28-1-1
Gram, C. (1884). Ueber die isolirte Farbung der Schizomyceten in Schnitt-und Trockenpraparaten. Fortschritte der Medicin, 2, 185-189.
Gronow, S., Welnitz, S., Lapidus, A., Nolan, M., Ivanova, N., Del Rio, T. G., … Lucas, S. (2010). Complete genome sequence of Veillonella parvula type strain (Te3T). Standards in Genomic Sciences, 2, 2010057.
Gupta, R. S. (2011). Origin of diderm (Gram-negative) bacteria: Antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek, International Journal of Molecular Microbiology, 100, 171-182.
Heinz, E., & Lithgow, T. (2014). A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Frontiers in Microbiology, 5, 370.
Helander, I., Hakalehto, E., Ahvenainen, J., & Haikara, A. (1983). Characterization of lipopolysaccharides of Pectinatus cerevisiophilus. FEM Microbiology Letters, 18, 223-226.
Helander, I. M., Haikara, A., Sadovskaya, I., Vimogradov, E., & Salkinoja-Salonen, M. S. (2004). Lipopolysaccharides of anaerobic beer spoilage bacteria of the genus Pectinatus-lipopolysaccharides of a gram-positive genus. FEMS Microbiology Reviews, 25(5), 543-552.
Hirai, J., Yamagishi, Y., Kinjo, T., Hagihara, M., Sakanashi, D., Suematsu, H., … Mikamo, H. (2016). Osteomyelitis caused by Veillonella species: case report and review of the literature. Journal of Infection and Chemiotherapy, 22, 417-420.
Hoiczyk, E., & Hansel, A. (2000). Cyanobacterial cell walls: News from an unusual prokaryotic envelope. Journal of Bacteriology, 182(5), 1191-1199.
Hoppert, M., Valdez, M., Enseleit, M., Theilmann, W., Valerius, O., Braus, G. H., … Liebl, W. (2012). Structure-functional analysis of the Dictyoglomus cell envelope. Systematic and Applied Microbiology, 35(5), 279-290. https://doi.org/10.1016/j.syapm.2012.06.004
Knapp, S., Brodal, C., Peterson, J., Qi, F., Kreth, J., & Meritt, J. (2017). Natural competence is common among clinical isolates of Veillonella parvula and is useful for genetic manipulation of this key member of the oral microbiome. Frontiers in Cellular and Infection Microbiology, 7, 139.
Kojima, S., & Kamio, Y. (2012). Molecular basis for the maintenance of envelope integrity in Selenomonas ruminantium: Cadaverine biosynthesis and covalent modification into the peptidoglycan play a major role. Journal of Nutritional Science and Vitaminology, 58(3), 153-160.
Kojima, S., Ko, K. C., Takatsuka, Y., Abe, N., Kaneko, J., Itoh, Y., & Kamio, Y. (2010). Cadaverine covalently linked to peptidoglycan is required for interaction between the peptidoglycan and the periplasm-exposed S-layer-homologous domain of major outer membrane protein Mep45 in Selenomonas ruminantium. Journal of Bacteriology, 192, 5953-5961. https://doi.org/10.1128/JB.00417-10
Lake, J. A. (2009). Evidence for an early prokaryotic endosymbiosis. Nature, 460, 967-971.
Li, C., Motaleb, A., Sal, M., Goldstein, S. F., & Charon, N. W. (2000). Spirochete periplasmic flagella and motility. Journal of Molecular Microbiology and Biotechnology, 2(4), 345-354.
Liu, J., Merritt, J., & Qi, F. (2011). Genetic transformation of Veillonella parvula. FEMS Microbiology Letters, 322(2), 138-144.
Liu, J., Xie, Z., Merritt, J., & Qi, F. (2012). Establishment of a tractable vector system in Veillonella spp. Applied and Environmental Microbiology, 78(9), 3488-3491.
Marchandin, H., Teyssier, C., Campos, J., Jean-Pierre, H., Roger, F., Gay, B., … Jumas-Bilak, E. (2010). Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. International Journal of Systematic and Evolutionary Microbiology, 60, 1271-1279. https://doi.org/10.1099/ijs.0.013102-0
Mashima, I., Fujita, M., Nakatsuka, Y., Kado, T., Furuichi, Y., Herastuti, S., & Nakazawa, F. (2015). The distribution and frequency of oral Veillonella spp. associated with chronic periodontits. International Journal of Current Microbioloogy and Applied Sciences, 4, 150-160.
Mavromatis, K., Ivanova, N., Anderson, I., Lykidis, A., Hooper, S. D., Sun, H., … Kyrpides, N. C. (2009). Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS ONE, 4. https://doi.org/10.1371/journal.pone.0004192
Mori, K., Yamaguchi, K., Sakiyama, Y., Urabe, T., & Suzuki, K. I. (2009). Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov. International Journal of Systematic and Evolutionary Microbiology, 59(11), 2894-2898.
Oren, A., Weisburg, W. G., Kessel, M., & Woese, C. R. (1984). Halobacteroidetes halobius gen. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead sea. Systematic and Applied Microbiology, 5, 58-70.
Palmer, R. J. Jr, Diaz, P. I., & Kolenbrander, P. E. (2006). Rapid succession within the Veillonella population of a developing human oral biofilm in situ. Journal of Bacteriology, 188, 4117-4124.
Park, J. S., Lee, W. C., Yeo, K. J., Ryu, K. S., Kumarasiri, M., Hesek, D., … Kim, H. Y. (2011). Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative bacterial outer membrane. The FASEB Journal, 26(1), 219-228.
Petrus, A. K., Swithers, K. S., Ranjit, C., Wu, S., Brewer, H. M., Gogarten, J. P., … Noll, K. M. (2012). Genes for the major structural components of Thermotogales species' togas revealed by proteomic and evolutionary analyses of OmpA and OmpB homologs. PLoS ONE, 7(6), e40236. https://doi.org/10.1371/journal.pone.0040236
Poppleton, D. I., Duchateau, M., Hourdel, V., Matondo, M., Flechsler, J., Klingl, A., … Gribaldo, S. (2017). Outer membrane proteome of Veillonella parvula: A diderm firmicute of the human microbiome. Frontiers in Microbiology, 8, 1215. https://doi.org/10.3389/fmicb.2017.01215
Raetz, C. R., & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 71(1), 635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
Rainey, F. A., Zhilina, T. N., Boulygina, E. S., Stackerbrandt, E., Tourova, T. P., & Zavarzin, G. A. (1995). The taxonomic study of the fermentative halophilic bacteria: Description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe, 1, 185-199.
Ranjit, C., & Noll, K. M. (2016). Distension of the toga of Thermotoga maritima involves continued growth of the outer envelope as cells enter the stationary phase. FEMS Microbiology Letters, 363(19), fnw218.
Raymann, K., Brochier-Armanet, C., & Gribaldo, S. (2015). The two-domain tree of life is linked to a new root for the Archaea. Proceedings of the National Academy of Sciences of the United States of America, 112(21), 6670-6675.
Rogosa, M. (1963). The genus Veillonella I. general, cultural, ecological and biochemical considerations. Journal of Bacteriology, 87(1), 162-170.
Rottem, S. H. L. O. M. O., Adar, L., Gross, Z., Ne'Eman, Z., & Davis, P. J. (1986). Incorporation and modification of exogenous phosphatidylcholines by mycoplasmas. Journal of Bacteriology, 167(1), 299-304. https://doi.org/10.1128/JB.167.1.299-304.1986
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414-a000414. https://doi.org/10.1101/cshperspect.a000414
Skolova, T. G., Gonźalez, J. M., Kostrinika, N. A., Chernyh, N. A., Slepova, T. V., Bonch-Osmolovskaya, E. A., & Robb, F. T. (2004). Thermosinus carboxydivorans gen. nov., sp. Nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. International Journal of Systematic and Evolutionary Microbiology, 54, 2353-2359.
Sutcliffe, I. C. (2010). A phylum level perspective on bacterial cell envelope architecture. Trends in Microbiology, 18(10), 464-470. https://doi.org/10.1016/j.tim.2010.06.005
Sutcliffe, I. C. (2011). Cell envelope architecture in the Chloroflexi: A shifting frontline in a phylogenetic turf war. Environmental Microbiology, 13, 279-282.
Thompson, B. G., Murray, R. G. E., & Boyce, J. F. (1982). The association of the surface array and the outer membrane of Deinococcus radiodurans. Canadian Journal of Microbiology, 28(9), 1081-1088.
Tocheva, E. I., Matson, E. G., Morris, D. M., Moussavi, F., Leadbetter, J. R., & Jensen, G. J. (2011). Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell, 146, 799-812.
Tocheva, E. I., Ortega, D. R., & Jensen, G. J. (2016). Sporulation, bacterial cell envelopes and the origin of life. Nature Reviews Microbiology, 14, 535-542.
van den Bogert, B., Erkus, O., Boekhorst, J., de Goffau, M., Smid, E. J., Zoetendal, E. G., & Kleerebezem, M. (2013). Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiology Ecology, 85(2), 376-388.
van Niftrik, L., & Devos, D. P. (2017). Editorial: Planctomycetes-Verrucomicrobia-Chlamydiae Bacterial Superphylum: New Model Organisms for Evolutionary Cell Biology. Frontiers in microbiology, 8, 1458. https://doi.org/10.3389/fmicb.2017.01458.
Veillon, A., Zuber, A. (1898). Recherches sur quelques microbes strictement anaérobies et leur rôle en pathologie. Archives de médecine expérimentale et d’anatomie pathologique, 10, 517-545.
Vincent, A. T., Nyongesa, S., Morneau, I., Reed, M. B., Tocheva, E. I., & Veyrier, F. J. (2018). The mycobacterial cell envelope: A relict from the past or the result of a recent evolution? Frontiers in Microbiology, 9, 2341.
Vinogradov, E., Egbosimba, E. E., Perry, M. B., Lam, J. S., & Forsberg, C. W. (2001). Structural analysis of the carbohydrate components of the outer membrane of the lipopolysaccharide-lacking cellulolytic ruminal bacterium Fibrobacter succinogenes S85. European Journal of Biochemistry, 268(12), 3566-3576.
Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., …Whitman, W. (2009). Bergey’s manual of systematic bacteriology. Volume 3: The Firmicutes. New York: Springer-Verlag.
Yu, J., Li, T., Dai, S., Weng, Y., Li, J., Li, Q., … Tian, B. (2017). A tamB homolog is involved in maintenance of cell envelope integrity and stress resistance of Deinococcus radiodurans. Scientific Reports, 7, 45929. https://doi.org/10.1038/srep45929
Yutin, N., & Galperin, M. Y. (2013). A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environmental Microbiology, 15, 2631-2641. https://doi.org/10.1111/1462-2920.12173
Zeikus, J. G., Hegge, P. W., Thompson, T. E., Phelps, T. J., & Langworthy, T. A. (1983). Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Current Microbiology, 9, 225-234. https://doi.org/10.1007/BF01567586
Zhilina, T. N., Zavarzina, D. G., Bukygina, E. S., Kevbrin, V. V., Osipov, G. A. (1992). Ecology, physiology and taxonomy studies on a new taxon of Haloanaerobiaceae, Haloincola saccharolytica gen. nov., sp. nov. Systematic and Applied Microbiology, 15(2), 275-284.
Zhilina, T. N., Zavarzina, D. G., Panteleeva, A. N., Osipov, G. A., Kostrikina, N. A., Tourova, T. P., & Zavarzin, G. A. (2012). Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. International Journal of Systematic and Evolutionary Microbiology, 62(Pt 7), 1666-1673.
Zhou, P., Li, X., Huang, I. H., & Qi, F. (2017). Veillonella catalase protects the growth of Fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-resident environments. Applied and Environmental Microbiology, 83(19), e01079-e1117.
Zhou, P., Li, X., & Qi, F. (2015a). Establishment of a counter-selectable markerless mutagenesis system in Veillonella atypica. Journal of Microbiological Methods, 112, 70-72. https://doi.org/10.1016/j.mimet.2015.03.010
Zhou, P., Liu, J., Merritt, J., & Qi, F. (2015b). A YadA-like autotransporter, Hag 1, in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral Streptococci, Porphyromonas gingivalis, and human oral buccal cells. Molecular Oral Microbiology, 30(4), 269-279.