Independent evolution of ancestral and novel defenses in a genus of toxic plants (
Erysimum
cardenolides
evolutionary biology
glucosinolates
myrosinase
phytochemical diversification
plant biology
trait evolution
Journal
eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614
Informations de publication
Date de publication:
07 04 2020
07 04 2020
Historique:
received:
08
09
2019
accepted:
24
03
2020
pubmed:
8
4
2020
medline:
25
3
2021
entrez:
8
4
2020
Statut:
epublish
Résumé
Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Plants are often attacked by insects and other herbivores. As a result, they have evolved to defend themselves by producing many different chemicals that are toxic to these pests. As producing each chemical costs energy, individual plants often only produce one type of chemical that is targeted towards their main herbivore. Related species of plants often use the same type of chemical defense so, if a particular herbivore gains the ability to cope with this chemical, it may rapidly become an important pest for the whole plant family. To escape this threat, some plants have gained the ability to produce more than one type of chemical defense. Wallflowers, for example, are a group of plants in the mustard family that produce two types of toxic chemicals: mustard oils, which are common in most plants in this family; and cardenolides, which are an innovation of the wallflowers, and which are otherwise found only in distantly related plants such as foxglove and milkweed. The combination of these two chemical defenses within the same plant may have allowed the wallflowers to escape attacks from their main herbivores and may explain why the number of wallflower species rapidly increased within the last two million years. Züst et al. have now studied the diversity of mustard oils and cardenolides present in many different species of wallflower. This analysis revealed that almost all of the tested wallflower species produced high amounts of both chemical defenses, while only one species lacked the ability to produce cardenolides. The levels of mustard oils had no relation to the levels of cardenolides in the tested species, which suggests that the regulation of these two defenses is not linked. Furthermore, Züst et al. found that closely related wallflower species produced more similar cardenolides, but less similar mustard oils, to each other. This suggests that mustard oils and cardenolides have evolved independently in wallflowers and have distinct roles in the defense against different herbivores. The evolution of insect resistance to pesticides and other toxins is an important concern for agriculture. Applying multiple toxins to crops at the same time is an important strategy to slow the evolution of resistance in the pests. The findings of Züst et al. describe a system in which plants have naturally evolved an equivalent strategy to escape their main herbivores. Understanding how plants produce multiple chemical defenses, and the costs involved, may help efforts to breed crop species that are more resistant to herbivores and require fewer applications of pesticides.
Autres résumés
Type: plain-language-summary
(eng)
Plants are often attacked by insects and other herbivores. As a result, they have evolved to defend themselves by producing many different chemicals that are toxic to these pests. As producing each chemical costs energy, individual plants often only produce one type of chemical that is targeted towards their main herbivore. Related species of plants often use the same type of chemical defense so, if a particular herbivore gains the ability to cope with this chemical, it may rapidly become an important pest for the whole plant family. To escape this threat, some plants have gained the ability to produce more than one type of chemical defense. Wallflowers, for example, are a group of plants in the mustard family that produce two types of toxic chemicals: mustard oils, which are common in most plants in this family; and cardenolides, which are an innovation of the wallflowers, and which are otherwise found only in distantly related plants such as foxglove and milkweed. The combination of these two chemical defenses within the same plant may have allowed the wallflowers to escape attacks from their main herbivores and may explain why the number of wallflower species rapidly increased within the last two million years. Züst et al. have now studied the diversity of mustard oils and cardenolides present in many different species of wallflower. This analysis revealed that almost all of the tested wallflower species produced high amounts of both chemical defenses, while only one species lacked the ability to produce cardenolides. The levels of mustard oils had no relation to the levels of cardenolides in the tested species, which suggests that the regulation of these two defenses is not linked. Furthermore, Züst et al. found that closely related wallflower species produced more similar cardenolides, but less similar mustard oils, to each other. This suggests that mustard oils and cardenolides have evolved independently in wallflowers and have distinct roles in the defense against different herbivores. The evolution of insect resistance to pesticides and other toxins is an important concern for agriculture. Applying multiple toxins to crops at the same time is an important strategy to slow the evolution of resistance in the pests. The findings of Züst et al. describe a system in which plants have naturally evolved an equivalent strategy to escape their main herbivores. Understanding how plants produce multiple chemical defenses, and the costs involved, may help efforts to breed crop species that are more resistant to herbivores and require fewer applications of pesticides.
Identifiants
pubmed: 32252891
doi: 10.7554/eLife.51712
pii: 51712
pmc: PMC7180059
doi:
pii:
Substances chimiques
Phytochemicals
0
Banques de données
Dryad
['10.5061/dryad.7hb5c59']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : PZ00P3-161472
Organisme : National Science Foundation
ID : 1811965
Organisme : National Science Foundation
ID : 1645256
Organisme : Deutsche Forschungsgemeinschaft
ID : DFG-PE 2059/3-1
Organisme : Agencia Estata de Investigacion, Spain
ID : CGL2017-86626-C2-2-P
Organisme : Junta de Andalucia Programa Operativo
ID : FEDER 2014-2020 A-RNM-505-UGR18
Organisme : Agencia Estatal de Investigación
ID : CGL2017-86626-C2-2-P
Informations de copyright
© 2020, Züst et al.
Déclaration de conflit d'intérêts
TZ, SS, AP, MM, HA, MM, TY, CH, PK, ME, GP, JG, FP, CM, JP, LM, GJ No competing interests declared
Références
Phytochemistry. 2014 Apr;100:26-33
pubmed: 24512841
Nat Prod Rep. 2003 Aug;20(4):382-91
pubmed: 12964834
Br J Pharmacol. 1987 May;91(1):31-8
pubmed: 3036289
Phytochemistry. 2011 Sep;72(13):1566-75
pubmed: 21316065
Plant J. 2003 Mar;33(5):923-37
pubmed: 12609033
Science. 1959 May 29;129(3361):1466-70
pubmed: 13658975
J Chem Ecol. 1991 Mar;17(3):525-33
pubmed: 24258803
Nat Ecol Evol. 2018 Jun;2(6):983-990
pubmed: 29760441
Plant J. 2015 May;82(4):547-55
pubmed: 25758811
Plant Physiol. 2018 Feb;176(2):1410-1422
pubmed: 29233850
J Biol Chem. 1953 Jun;202(2):675-85
pubmed: 13061491
Plant Cell. 2011 Jun;23(6):2456-69
pubmed: 21712415
Plant Cell. 2009 Jun;21(6):1813-29
pubmed: 19542295
Physiol Plant. 2002 May;115(1):25-34
pubmed: 12010464
J Chem Ecol. 1993 Feb;19(2):195-210
pubmed: 24248868
J Chem Ecol. 2009 Nov;35(11):1326-34
pubmed: 20012168
Evolution. 2003 Apr;57(4):717-45
pubmed: 12778543
Plant Physiol. 2014 Feb;164(2):513-24
pubmed: 24306534
Plant Physiol. 2008 Mar;146(3):1028-39
pubmed: 18162591
Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
pubmed: 12136088
Am J Bot. 2011 Jun;98(6):1049-60
pubmed: 21613070
J Biol Chem. 2004 Dec 3;279(49):50717-25
pubmed: 15358770
Bioinformatics. 2008 Mar 1;24(5):637-44
pubmed: 18218656
Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14587-92
pubmed: 14506289
Plant Physiol. 2003 Sep;133(1):63-72
pubmed: 12970475
Oecologia. 1975 Jun;20(2):117-127
pubmed: 28308818
New Phytol. 2015 Nov;208(3):915-27
pubmed: 26192213
Plant Cell. 2006 Oct;18(10):2664-79
pubmed: 17056707
FEBS J. 2006 Jun;273(11):2432-46
pubmed: 16704417
J Chem Ecol. 2001 Aug;27(8):1585-94
pubmed: 11521398
J Chem Ecol. 2008 Aug;34(8):1026-37
pubmed: 18581178
Plant Cell. 2006 Jun;18(6):1524-36
pubmed: 16679459
J Chem Ecol. 1993 Jul;19(7):1355-69
pubmed: 24249167
Genome Biol. 2004;5(2):R12
pubmed: 14759262
Elife. 2018 Aug 14;7:
pubmed: 29969096
Plant Mol Biol. 2015 May;88(1-2):119-31
pubmed: 25851613
Bioinformatics. 2014 May 1;30(9):1236-40
pubmed: 24451626
PLoS One. 2015 Jul 15;10(7):e0132628
pubmed: 26177194
Plant Mol Biol. 2000 Jan;42(1):93-113
pubmed: 10688132
Ecol Lett. 2011 May;14(5):476-83
pubmed: 21371232
PLoS Biol. 2016 Feb 12;14(2):e1002379
pubmed: 26871574
Evolution. 2013 Sep;67(9):2753-61
pubmed: 24033181
Plant Physiol. 2003 Feb;131(2):773-9
pubmed: 12586901
Bioinformatics. 2014 May 1;30(9):1312-3
pubmed: 24451623
Anal Chem. 2010 Jul 1;82(13):5686-96
pubmed: 20521824
J Chem Ecol. 2002 Mar;28(3):587-99
pubmed: 11944835
Plant J. 2008 May;54(3):428-39
pubmed: 18248598
Plant Cell. 2009 Jun;21(6):1622
pubmed: 19531598
Elife. 2015 Apr 13;4:
pubmed: 25867014
Planta. 2004 Apr;218(6):1026-35
pubmed: 14740211
Bioinformatics. 2019 Feb 1;35(3):526-528
pubmed: 30016406
J Chem Ecol. 2013 Apr;39(4):465-80
pubmed: 23483346
Physiol Plant. 2009 Feb;135(2):140-9
pubmed: 19077143
Nat Genet. 2016 Sep;48(9):1077-82
pubmed: 27428747
New Phytol. 2018 Apr;218(2):762-773
pubmed: 29479722
Plant J. 2004 Dec;40(6):893-908
pubmed: 15584955
Plant Physiol. 2008 Dec;148(4):2096-108
pubmed: 18945935
New Phytol. 2012 Apr;194(1):28-45
pubmed: 22292897
Plant Cell. 2001 Jan;13(1):101-11
pubmed: 11158532
Plant J. 2007 Jun;50(5):902-10
pubmed: 17461789
Syst Biol. 2018 Sep 1;67(5):821-829
pubmed: 29562307
Plant Mol Biol. 2018 May;97(1-2):37-55
pubmed: 29603041
J Biol Chem. 2000 May 12;275(19):14659-66
pubmed: 10799553
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10057-60
pubmed: 18645183
Plant Cell Physiol. 2009 Jul;50(7):1181-90
pubmed: 19493961
Genome Res. 2008 Jan;18(1):188-96
pubmed: 18025269
Bioinformatics. 2008 Mar 1;24(5):715-6
pubmed: 18227120
Mol Phylogenet Evol. 2016 Jun;99:204-224
pubmed: 26993763
BMC Evol Biol. 2006 Apr 25;6:36
pubmed: 16638138
Nat Chem Biol. 2009 Aug;5(8):575-7
pubmed: 19483696
Nature. 2012 Nov 15;491(7424):444-8
pubmed: 23123857
Plant Mol Biol. 2009 Oct;71(3):227-39
pubmed: 19597944
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10973-8
pubmed: 26283384
Genome Res. 2009 Sep;19(9):1639-45
pubmed: 19541911
Sci Rep. 2017 Oct 19;7(1):13528
pubmed: 29051622
Cold Spring Harb Protoc. 2011 Aug 01;2011(8):940-9
pubmed: 21807852
Gigascience. 2019 Apr 1;8(4):
pubmed: 30953568
Plants (Basel). 2016 Jan 15;5(1):
pubmed: 27135227
BMC Bioinformatics. 2008 Jan 14;9:18
pubmed: 18194517
FEBS J. 2012 May;279(9):1545-62
pubmed: 22212644
Ecol Lett. 2007 Jun;10(6):499-511
pubmed: 17498149
Mol Biol Evol. 2016 Feb;33(2):394-412
pubmed: 26516094
Plant Cell. 2011 Feb;23(2):716-29
pubmed: 21317374
Mol Ecol. 2018 Jun 28;:
pubmed: 29953708
Oecologia. 2005 Apr;143(3):412-8
pubmed: 15678331
Plant Cell Physiol. 2010 Sep;51(9):1480-7
pubmed: 20663849
Plant Physiol. 2008 Nov;148(3):1721-33
pubmed: 18799661
Philos Trans R Soc Lond B Biol Sci. 2011 May 12;366(1569):1337-45
pubmed: 21444308
J Biol Chem. 2000 Oct 27;275(43):33712-7
pubmed: 10922360
Annu Rev Plant Biol. 2012;63:431-50
pubmed: 22404468
Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):13040-5
pubmed: 22826239
Plant J. 2008 Jun;54(6):1015-26
pubmed: 18346197
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):12003-12008
pubmed: 29078296
Pharmazie. 1995 Jun;50(6):395-9
pubmed: 7651976
Am Nat. 2003 Apr;161(4):507-22
pubmed: 12776881
Plant Physiol. 2001 Jun;126(2):811-25
pubmed: 11402209
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16442-7
pubmed: 25349406
Elife. 2020 Apr 07;9:
pubmed: 32252891
Science. 2009 Jan 2;323(5910):101-6
pubmed: 19095900
Syst Biol. 2008 Jun;57(3):503-7
pubmed: 18570042
Gigascience. 2018 Aug 1;7(8):
pubmed: 30052957
Gigascience. 2018 Dec 1;7(12):
pubmed: 30418570
J Chem Ecol. 1989 Aug;15(8):2161-9
pubmed: 24272377
Am Nat. 2008 Jul;172(1):102-15
pubmed: 18505385
Plant Cell. 2001 Mar;13(3):681-93
pubmed: 11251105
Biosci Biotechnol Biochem. 2005 Apr;69(4):806-10
pubmed: 15849421
Phytochemistry. 2003 Sep;64(1):3-19
pubmed: 12946402
Bioinformatics. 2012 Oct 15;28(20):2689-90
pubmed: 22908216
Gene. 2011 Nov 10;487(2):135-42
pubmed: 21835231
Plant J. 2004 Mar;37(5):770-7
pubmed: 14871316
Phytochemistry. 2001 Jan;56(1):5-51
pubmed: 11198818
Plant J. 2017 Jan;89(2):204-220
pubmed: 27612205
Plant Mol Biol. 1995 Mar;27(5):911-22
pubmed: 7766881
Plant Physiol. 2001 Sep;127(1):108-18
pubmed: 11553739
J Chem Ecol. 2019 Jan;45(1):50-60
pubmed: 30523520
Phytochemistry. 2006 Sep;67(18):2050-7
pubmed: 16884746
Plant Cell. 2009 Mar;21(3):985-99
pubmed: 19293369
Evolution. 2000 Dec;54(6):1839-54
pubmed: 11209764
Plant Cell. 2001 Dec;13(12):2793-807
pubmed: 11752388
Plant Physiol Biochem. 2008 Apr;46(4):506-16
pubmed: 18395461
Plant Physiol. 2017 Apr;173(4):2041-2059
pubmed: 28228535
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Front Plant Sci. 2016 Aug 29;7:1292
pubmed: 27621741
Plant J. 2006 May;46(4):549-62
pubmed: 16640593
PLoS One. 2012;7(11):e47768
pubmed: 23185243
Bioinformatics. 2006 Jun 15;22(12):1540-2
pubmed: 16595560
Ecology. 2017 Mar;98(3):616-623
pubmed: 27984635
PLoS One. 2014 Nov 19;9(11):e112963
pubmed: 25409509
Nat Methods. 2016 Dec;13(12):1050-1054
pubmed: 27749838
Front Plant Sci. 2018 Sep 28;9:1424
pubmed: 30323822
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8
pubmed: 17485477
Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2379-84
pubmed: 10681464
Plant Physiol. 2007 May;144(1):60-71
pubmed: 17369439
Nat Protoc. 2013 Aug;8(8):1494-512
pubmed: 23845962
Science. 2009 Jan 2;323(5910):95-101
pubmed: 19095898
Philos Trans R Soc Lond B Biol Sci. 2014 Aug 19;369(1649):20130257
pubmed: 25002702
Methods Mol Biol. 2007;406:89-112
pubmed: 18287689
Mol Biol Evol. 2016 Jul;33(7):1870-4
pubmed: 27004904
Plant Physiol. 2001 Nov;127(3):1077-88
pubmed: 11706188
Annu Rev Plant Biol. 2006;57:303-33
pubmed: 16669764
Bioinformatics. 2015 Aug 1;31(15):2577-9
pubmed: 25819675
Nat Commun. 2016 Aug 30;7:12570
pubmed: 27573094
Plant J. 2009 Nov;60(4):679-90
pubmed: 19674406
New Phytol. 2014 Feb;201(3):733-50
pubmed: 24117919
Plant Physiol. 2016 Dec;172(4):2190-2203
pubmed: 27810943
Plant Cell. 2001 Feb;13(2):351-67
pubmed: 11226190
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Mol Biol Evol. 2018 Mar 1;35(3):543-548
pubmed: 29220515
Genome Biol. 2015 Aug 06;16:157
pubmed: 26243257
BMC Bioinformatics. 2018 May 8;19(Suppl 6):153
pubmed: 29745866
FEBS J. 2006 Jan;273(1):122-36
pubmed: 16367753
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
New Phytol. 2011 Jan;189(1):160-75
pubmed: 20840499
Phytochemistry. 2009 Jul-Aug;70(11-12):1345-54
pubmed: 19703694
J Chem Ecol. 1990 Apr;16(4):1059-67
pubmed: 24263711
Evolution. 2015 Apr;69(4):863-78
pubmed: 25757195
Plant Physiol. 2017 Mar;173(3):1583-1593
pubmed: 28100450
Evolution. 1977 Sep;31(3):568-579
pubmed: 28563490
BMC Bioinformatics. 2004 May 14;5:59
pubmed: 15144565