Application and Structural Analysis of Triazole-Bridged Disulfide Mimetics in Cyclic Peptides.
disulfide mimetics
inhibitors
peptides
peptidomimetics
triazole bridges
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
06 07 2020
06 07 2020
Historique:
received:
06
03
2020
pubmed:
10
4
2020
medline:
16
3
2021
entrez:
10
4
2020
Statut:
ppublish
Résumé
Ruthenium-catalysed azide-alkyne cycloaddition (RuAAC) provides access to 1,5-disubstituted 1,2,3-triazole motifs in peptide engineering applications. However, investigation of this motif as a disulfide mimetic in cyclic peptides has been limited, and the structural consequences remain to be studied. We report synthetic strategies to install various triazole linkages into cyclic peptides through backbone cyclisation and RuAAC cross-linking reactions. These linkages were evaluated in four serine protease inhibitors based on sunflower trypsin inhibitor-1. NMR and X-ray crystallography revealed exceptional consensus of bridging distance and backbone conformations (RMSD<0.5 Å) of the triazole linkages compared to the parent disulfide molecules. The triazole-bridged peptides also displayed superior half-lives in liver S9 stability assays compared to disulfide-bridged peptides. This work establishes a foundation for the application of 1,5-disubstituted 1,2,3-triazoles as disulfide mimetics.
Identifiants
pubmed: 32270580
doi: 10.1002/anie.202003435
doi:
Substances chimiques
Disulfides
0
Peptides, Cyclic
0
SFTI-1 peptide, sunflower
0
Triazoles
0
Ruthenium
7UI0TKC3U5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11273-11277Informations de copyright
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
D. J. Craik, D. P. Fairlie, S. Liras, D. Price, Chem. Biol. Drug Des. 2013, 81, 136-147;
E. Valeur, S. M. Gueret, H. Adihou, R. Gopalakrishnan, M. Lemurell, H. Waldmann, T. N. Grossmann, A. T. Plowright, Angew. Chem. Int. Ed. 2017, 56, 10294-10323;
Angew. Chem. 2017, 129, 10428-10459.
S. E. Northfield, C. K. Wang, C. I. Schroeder, T. Durek, M.-W. Kan, J. E. Swedberg, D. J. Craik, Eur. J. Med. Chem. 2014, 77, 248-257.
M. C. Yi, C. Khosla, Annu. Rev. Chem. Biomol. Eng. 2016, 7, 197-222.
A. Gori, P. Gagni, S. Rinaldi, Chem. Eur. J. 2017, 23, 14987-14995.
B. Schmidt, L. Ho, P. J. Hogg, Biochemistry 2006, 45, 7429-7433.
M. L. J. Korsinczky, H. J. Schirra, K. J. Rosengren, J. West, B. A. Condie, L. Otvos, M. A. Anderson, D. J. Craik, J. Mol. Biol. 2001, 311, 579-591;
S. Luckett, R. S. Garcia, J. J. Barker, A. V. Konarev, P. R. Shewry, A. R. Clarke, R. L. Brady, J. Mol. Biol. 1999, 290, 525-533.
S. J. de Veer, L. Furio, J. E. Swedberg, C. A. Munro, M. Brattsand, J. A. Clements, A. Hovnanian, J. M. Harris, J. Invest. Dermatol. 2017, 137, 430-439;
J. E. Swedberg, G. Wu, T. Mahatmanto, T. Durek, T. T. Caradoc-Davies, J. C. Whisstock, R. H. P. Law, D. J. Craik, J. Med. Chem. 2019, 62, 552-560;
T. Durek, P. M. Cromm, A. M. White, C. I. Schroeder, Q. Kaas, J. Weidmann, A. Ahmad Fuaad, O. Cheneval, P. J. Harvey, N. L. Daly, Y. Zhou, A. Dellsén, T. Österlund, N. Larsson, L. Knerr, U. Bauer, H. Kessler, M. Cai, V. J. Hruby, A. T. Plowright, D. J. Craik, J. Med. Chem. 2018, 61, 3674-3684;
Y. Qui, M. Taichi, N. Wei, H. Yang, K. Q. Luo, J. P. Tam, J. Med. Chem. 2017, 60, 504-510.
M. Empting, O. Avrutina, R. Meusinger, S. Fabritz, M. Reinwarth, M. Biesalski, S. Voigt, G. Buntkowsky, H. Kolmar, Angew. Chem. Int. Ed. 2011, 50, 5207-5211;
Angew. Chem. 2011, 123, 5313-5317.
L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, G. Jia, J. Am. Chem. Soc. 2005, 127, 15998-15999.
S. Pacifico, A. Kerckhoffs, A. J. Fallow, R. E. Foreman, R. Guerrini, J. McDonald, D. G. Lambert, A. G. Jamieson, Org. Biomol. Chem. 2017, 15, 4704-4710.
S. R. Tala, A. Singh, C. J. Lensing, S. M. Schnell, K. T. Freeman, J. R. Rocca, C. Haskell-Luevano, ACS Chem. Neurosci. 2018, 9, 1001-1013.
A. Knuhtsen, C. Whitmore, F. S. McWhinnie, L. McDougall, R. Whiting, B. O. Smith, C. M. Timperley, A. C. Green, K. I. Kinnear, A. G. Jamieson, Chem. Sci. 2019, 10, 1671-1676.
O. Avrutina, H. Fittler, B. Glotzbach, H. Kolmar, M. Empting, Org. Biomol. Chem. 2012, 10, 7753-7762.
V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596-2599;
Angew. Chem. 2002, 114, 2708-2711;
C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057-3064.
S. J. de Veer, L. Furio, J. M. Harris, A. Hovnanian, Trends Mol. Med. 2014, 20, 166-178.
P. M. Mannucci, M. Levi, N. Engl. J. Med. 2007, 356, 2301-2311.
K. List, R. Szabo, A. Molinolo, V. Sriuranpong, V. Redeye, T. Murdock, B. Burke, B. S. Nielsen, J. S. Gutkind, T. H. Bugge, Genes Dev. 2005, 19, 1934-1950.
P. Quimbar, U. Malik, C. P. Sommerhoff, Q. Kaas, L. Y. Chan, Y. H. Huang, M. Grundhuber, K. Dunse, D. J. Craik, M. A. Anderson, N. L. Daly, J. Biol. Chem. 2013, 288, 13885-13896.
C. Yuan, L. Chen, E. J. Meehan, N. Daly, D. J. Craik, M. Huang, J. C. Ngo, BMC Struct. Biol. 2011, 11, 30.