Diversity, ecology and evolution of Archaea.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
07 2020
Historique:
received: 07 10 2019
accepted: 30 03 2020
pubmed: 6 5 2020
medline: 21 10 2020
entrez: 6 5 2020
Statut: ppublish

Résumé

Compared to bacteria, our knowledge of archaeal biology is limited. Historically, microbiologists have mostly relied on culturing and single-gene diversity surveys to understand Archaea in nature. However, only six of the 27 currently proposed archaeal phyla have cultured representatives. Advances in genomic sequencing and computational approaches are revolutionizing our understanding of Archaea. The recovery of genomes belonging to uncultured groups from the environment has resulted in the description of several new phyla, many of which are globally distributed and are among the predominant organisms on the planet. In this Review, we discuss how these genomes, together with long-term enrichment studies and elegant in situ measurements, are providing insights into the metabolic capabilities of the Archaea. We also debate how such studies reveal how important Archaea are in mediating an array of ecological processes, including global carbon and nutrient cycles, and how this increase in archaeal diversity has expanded our view of the tree of life and early archaeal evolution, and has provided new insights into the origin of eukaryotes.

Identifiants

pubmed: 32367054
doi: 10.1038/s41564-020-0715-z
pii: 10.1038/s41564-020-0715-z
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

887-900

Commentaires et corrections

Type : ErratumIn

Références

Chatton, E. Titres et travaux scientifiques (1906–1937) de Edouard Chatton. (Sète: Impr. E. Sottan, 1938).
Whittaker, R. H. New concepts of kingdoms of organisms. Science 163, 150–160 (1969).
pubmed: 5762760 doi: 10.1126/science.163.3863.150
Woese, C. R. et al. Conservation of primary structure in 16S ribosomal RNA. Nature 254, 83–86 (1975).
pubmed: 1089909 doi: 10.1038/254083a0
Balch, W. E., Magrum, L. J., Fox, G. E., Wolfe, R. S. & Woese, C. R. An ancient divergence among the bacteria. J. Mol. Evol. 9, 305–311 (1977).
pubmed: 408502 doi: 10.1007/BF01796092
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).
pubmed: 270744 pmcid: 432104 doi: 10.1073/pnas.74.11.5088
Woese, C. R., Magrum, L. J. & Fox, G. E. Archaebacteria. J. Mol. Evol. 11, 245–251 (1978).
pubmed: 691075 doi: 10.1007/BF01734485
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).
pubmed: 2112744 pmcid: 54159 doi: 10.1073/pnas.87.12.4576
Doolittle, W. F. & Logsdon, J. M. Jr. Archaeal genomics: do archaea have a mixed heritage? Curr. Biol. 8, R209–R211 (1998).
pubmed: 9512414 doi: 10.1016/S0960-9822(98)70127-7
MacGregor, B. J., Moser, D. P., Alm, E. W., Nealson, K. H. & Stahl, D. A. Crenarchaeota in Lake Michigan sediment. Appl. Environ. Microbiol. 63, 1178–1181 (1997).
pubmed: 9055434 pmcid: 168409 doi: 10.1128/aem.63.3.1178-1181.1997
DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).
pubmed: 1608980 pmcid: 49357 doi: 10.1073/pnas.89.12.5685
Olsen, G. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).
pubmed: 2430518 doi: 10.1146/annurev.mi.40.100186.002005
Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
pubmed: 14527284 doi: 10.1146/annurev.micro.57.030502.090759
Reysenbach, A. L., Giver, L. J., Wickham, G. S. & Pace, N. R. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58, 3417–3418 (1992).
pubmed: 1280061 pmcid: 183115 doi: 10.1128/aem.58.10.3417-3418.1992
Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).
pubmed: 9733676 pmcid: 107498 doi: 10.1128/JB.180.18.4765-4774.1998
Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).
doi: 10.1126/science.276.5313.734 pubmed: 9115194
Baker, B. J. & Dick, G. J. Omic approaches in microbial ecology: charting the unknown. Microbe 8, 353–359 (2013).
Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).
pubmed: 1545865 doi: 10.1038/356148a0
Barns, S. M., Fundgya, R. E., Jeffries, M. W. & Pace, N. R. Remarkable archaeal diversity detected in a Yellowstone national park hot spring environment. Proc. Natl Sci. USA 91, 1609–1613 (1994).
doi: 10.1073/pnas.91.5.1609
Barns, S. M., Delwiche, C. F., Palmer, J. D. & Pace, N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl Acad. Sci. USA 93, 9188–9193 (1996).
pubmed: 8799176 pmcid: 38617 doi: 10.1073/pnas.93.17.9188
Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407–2425 (2017).
pubmed: 28777382 pmcid: 5649171 doi: 10.1038/ismej.2017.122
Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
pubmed: 22495754 doi: 10.1093/bioinformatics/bts174
Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).
pubmed: 14961025 doi: 10.1038/nature02340
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).
pubmed: 15001713 doi: 10.1126/science.1093857
Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009).
pubmed: 19698104 pmcid: 2745766 doi: 10.1186/gb-2009-10-8-r85
Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl Acad. Sci. USA 104, 9052–9057 (2007).
pubmed: 17502618 pmcid: 1885626 doi: 10.1073/pnas.0700496104
Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).
pubmed: 30479325 pmcid: 6258724 doi: 10.1038/s41467-018-07418-0
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
doi: 10.1038/nmicrobiol.2016.48 pubmed: 27572647
Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).
pubmed: 22018741 doi: 10.1016/j.tim.2011.09.002
Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).
pubmed: 23851394 doi: 10.1038/nature12352
Smith, P. H. & Hungate, R. E. Isolation and characterization of Methanobacterium ruminantium n. sp. J. Bacteriol. 75, 713–718 (1958).
pubmed: 13549377 pmcid: 290140 doi: 10.1128/jb.75.6.713-718.1958
Brock, T. D. & Darland, G. K. Limits of microbial existence: temperature and pH. Science 169, 1316–1318 (1970).
pubmed: 5454141 doi: 10.1126/science.169.3952.1316
Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S. & Woese, C. R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl Acad. Sci. USA 74, 4537–4541 (1977).
pubmed: 16592452 pmcid: 431980 doi: 10.1073/pnas.74.10.4537
Wolfe, R. S. Microbial formation of methane. Adv. Microb. Physiol. 6, 107–146 (1971).
pubmed: 4950179 doi: 10.1016/S0065-2911(08)60068-5
Larsen, H. Halophilic and halotolerant microorganisms-an overview and historical perspective. FEMS Microbiol. Lett. 2, 3–7 (1986).
doi: 10.1111/j.1574-6968.1986.tb01835.x
Andrei, A.-Ş., Banciu, H. L. & Oren, A. Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol. Lett. 330, 1–9 (2012).
pubmed: 22339687 doi: 10.1111/j.1574-6968.2012.02526.x
Klenk, H. P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).
pubmed: 9389475 doi: 10.1038/37052
Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH
pubmed: 18664583 pmcid: 2490668 doi: 10.1073/pnas.0712334105
Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).
pubmed: 12032340 pmcid: 124316 doi: 10.1073/pnas.072210299
Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4, 595–602 (2019).
pubmed: 30833728 doi: 10.1038/s41564-019-0364-2
Vetriani, C., Reysenbach, A. L. & Doré, J. Recovery and phylogenetic analysis of archaeal rRNA sequences from continental shelf sediments. FEMS Microbiol. Lett. 161, 83–88 (1998).
pubmed: 9561734 doi: 10.1111/j.1574-6968.1998.tb12932.x
Iverson, V. et al. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335, 587–590 (2012).
pubmed: 22301318 doi: 10.1126/science.1212665
Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).
pubmed: 27572439 doi: 10.1038/nmicrobiol.2016.5
Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016).
pubmed: 27572167 doi: 10.1038/nmicrobiol.2016.2
Vetriani, C., Jannasch, H. W., MacGregor, B. J., Stahl, D. A. & Reysenbach, A. L. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375–4384 (1999).
pubmed: 10508063 pmcid: 91581 doi: 10.1128/AEM.65.10.4375-4384.1999
Jungbluth, S. P., Amend, J. P. & Rappé, M. S. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Sci. Data 4, 170037 (2017).
pubmed: 28350381 pmcid: 5369317 doi: 10.1038/sdata.2017.37
Carr, S. A. et al. Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the subseafloor crustal biosphere. ISME J. 13, 1457–1468 (2019).
pubmed: 30728468 pmcid: 6775978 doi: 10.1038/s41396-019-0352-9
Chuvochina, M. et al. The importance of designating type material for uncultured taxa. Syst. Appl. Microbiol. 42, 15–21 (2019).
pubmed: 30098831 doi: 10.1016/j.syapm.2018.07.003
Lazar, C. S., Baker, B. J., Seitz, K. W. & Teske, A. P. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J. 11, 1058 (2017).
pubmed: 28321126 pmcid: 5364366 doi: 10.1038/ismej.2017.8
Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).
pubmed: 29379208 pmcid: 6792436 doi: 10.1038/s41564-017-0098-y
Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014).
pubmed: 25425419 doi: 10.1038/ncomms6497
Teske, A. & Sørensen, K. B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2, 3–18 (2008).
pubmed: 18180743 doi: 10.1038/ismej.2007.90
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001).
pubmed: 11463914 doi: 10.1126/science.1061338
Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).
pubmed: 15353801 doi: 10.1126/science.1100025
Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).
pubmed: 16612380 doi: 10.1038/nature04617
Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).
pubmed: 23892779 doi: 10.1038/nature12375
McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).
pubmed: 26375009 doi: 10.1038/nature15512
Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E. & Orphan, V. J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707 (2016).
pubmed: 26912857 doi: 10.1126/science.aad7154
Laso-Pérez, R. et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016).
pubmed: 27749816 doi: 10.1038/nature20152
Lloyd, K. G., Lapham, L. & Teske, A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl. Environ. Microbiol. 72, 7218–7230 (2006).
pubmed: 16980428 pmcid: 1636178 doi: 10.1128/AEM.00886-06
Maignien, L. et al. Anaerobic oxidation of methane in hypersaline cold seep sediments. FEMS Microbiol. Ecol. 83, 214–231 (2013).
pubmed: 22882187 doi: 10.1111/j.1574-6941.2012.01466.x
Dombrowski, N., Seitz, K. W., Teske, A. P. & Baker, B. J. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5, 106 (2017).
pubmed: 28835260 pmcid: 5569505 doi: 10.1186/s40168-017-0322-2
Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).
pubmed: 30833729 pmcid: 6453112 doi: 10.1038/s41564-019-0363-3
Chen, S.-C. et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568, 108–111 (2019).
pubmed: 30918404 doi: 10.1038/s41586-019-1063-0
Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013).
pubmed: 23808334 doi: 10.1146/annurev-micro-092412-155614
Mwirichia, R. et al. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci. Rep. 6, 19181 (2016).
pubmed: 26758088 pmcid: 4725937 doi: 10.1038/srep19181
Takai, K., Moser, D. P., DeFlaun, M., Onstott, T. C. & Fredrickson, J. K. Archaeal diversity in waters from deep South African gold mines. Appl. Environ. Microbiol. 67, 5750–5760 (2001).
pubmed: 11722932 pmcid: 93369 doi: 10.1128/AEM.67.21.5750-5760.2001
Inagaki, F. et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of okhotsk. Appl. Environ. Microbiol. 69, 7224–7235 (2003).
pubmed: 14660370 pmcid: 309994 doi: 10.1128/AEM.69.12.7224-7235.2003
Parkes, R. J. et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436, 390–394 (2005).
pubmed: 16034418 doi: 10.1038/nature03796
Biddle, J. F. et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl Acad. Sci. USA 103, 3846–3851 (2006).
pubmed: 16505362 pmcid: 1533785 doi: 10.1073/pnas.0600035103
Takai, K. & Horikoshi, K. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297 (1999).
pubmed: 10430559 pmcid: 1460697 doi: 10.1093/genetics/152.4.1285
Reysenbach, A.-L. et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442, 444–447 (2006).
pubmed: 16871216 doi: 10.1038/nature04921
Knittel, K., Lösekann, T., Boetius, A., Kort, R. & Amann, R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 (2005).
pubmed: 15640223 pmcid: 544223 doi: 10.1128/AEM.71.1.467-479.2005
Lloyd, K. G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013).
pubmed: 23535597 doi: 10.1038/nature12033
Dettling, M. D., Yavitt, J. B., Cadillo-Quiroz, H., Sun, C. & Zinder, S. H. Soil–methanogen interactions in two peatlands (Bog, Fen) in central New York State. Geomicrobiol. J. 24, 247–259 (2007).
doi: 10.1080/01490450701456651
Zhou, Z. et al. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J. 13, 885–901 (2019).
pubmed: 30514872 doi: 10.1038/s41396-018-0321-8
Massana, R., DeLong, E. F. & Pedrós-Alió, C. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl. Environ. Microbiol. 66, 1777–1787 (2000).
pubmed: 10788339 pmcid: 101412 doi: 10.1128/AEM.66.5.1777-1787.2000
Fuhrman, J. A. & Davis, A. A. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar. Ecol. Prog. Ser. 150, 275–285 (1997).
doi: 10.3354/meps150275
Martin-Cuadrado, A.-B. et al. A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum. ISME J. 9, 1619–1634 (2015).
pubmed: 25535935 doi: 10.1038/ismej.2014.249
Li, M. et al. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat. Commun. 6, 8933 (2015).
pubmed: 26573375 doi: 10.1038/ncomms9933
Tully, B. J. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nat. Commun. 10, 271 (2019).
pubmed: 30655514 pmcid: 6336850 doi: 10.1038/s41467-018-07840-4
Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663–675 (2019).
pubmed: 30323263 doi: 10.1038/s41396-018-0282-y
Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 10, 2158–2173 (2016).
pubmed: 26953597 pmcid: 4989311 doi: 10.1038/ismej.2016.20
Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).
pubmed: 11986665 doi: 10.1038/417063a
Waters, E. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl Acad. Sci. USA 100, 12984–12988 (2003).
pubmed: 14566062 pmcid: 240731 doi: 10.1073/pnas.1735403100
Baker, B. J. et al. Lineages of acidophilic archaea revealed by community genomic analysis. Science 314, 1933–1935 (2006).
pubmed: 17185602 doi: 10.1126/science.1132690
Baker, B. J. et al. Enigmatic, ultrasmall, uncultivated Archaea. Proc. Natl Acad. Sci. USA 107, 8806–8811 (2010).
pubmed: 20421484 pmcid: 2889320 doi: 10.1073/pnas.0914470107
Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).
pubmed: 21716304 doi: 10.1038/ismej.2011.78
Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).
pubmed: 25702576 doi: 10.1016/j.cub.2015.01.014
Schwank, K. et al. An archaeal symbiont-host association from the deep terrestrial subsurface. ISME J. 13, 2135–2139 (2019).
pubmed: 31048756 pmcid: 6776059 doi: 10.1038/s41396-019-0421-0
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
pubmed: 28894102 doi: 10.1038/s41564-017-0012-7
Bird, J. T., Baker, B. J., Probst, A. J., Podar, M. & Lloyd, K. G. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales. Front. Microbiol. 7, 1221 (2016).
pubmed: 27547202 pmcid: 4975002 doi: 10.3389/fmicb.2016.01221
Krause, S., Bremges, A., Münch, P. C., McHardy, A. C. & Gescher, J. Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms. Sci. Rep. 7, 3289 (2017).
pubmed: 28607432 pmcid: 5468238 doi: 10.1038/s41598-017-03315-6
Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661–14670 (2019).
pubmed: 31253704 pmcid: 6642349 doi: 10.1073/pnas.1905179116
Comolli, L. R., Baker, B. J., Downing, K. H., Siegerist, C. E. & Banfield, J. F. Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J. 3, 159–167 (2009).
pubmed: 18946497 doi: 10.1038/ismej.2008.99
Heimerl, T. et al. A complex endomembrane system in the Archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front. Microbiol. 8, 1072 (2017).
pubmed: 28659892 pmcid: 5468417 doi: 10.3389/fmicb.2017.01072
Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).
pubmed: 28005056 doi: 10.1038/nature21059
Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252 (2008).
pubmed: 18274537 doi: 10.1038/nrmicro1852
Spang, A. et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 18, 331–340 (2010).
pubmed: 20598889 doi: 10.1016/j.tim.2010.06.003
Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).
pubmed: 18535141 pmcid: 2430366 doi: 10.1073/pnas.0801980105
Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).
pubmed: 27694807 doi: 10.1038/nmicrobiol.2016.170
Blöchl, E. et al. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1, 14–21 (1997).
pubmed: 9680332 doi: 10.1007/s007920050010
Cubonová, L., Sandman, K., Hallam, S. J., Delong, E. F. & Reeve, J. N. Histones in crenarchaea. J. Bacteriol. 187, 5482–5485 (2005).
pubmed: 16030242 pmcid: 1196040 doi: 10.1128/JB.187.15.5482-5485.2005
Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv. Mikrobiol. 84, 54–68 (1972).
doi: 10.1007/BF00408082
Zhang, C., Phillips, A. P. R., Wipfler, R. L., Olsen, G. J. & Whitaker, R. J. The essential genome of the crenarchaeal model Sulfolobus islandicus. Nat. Commun. 9, 4908 (2018).
pubmed: 30464174 pmcid: 6249222 doi: 10.1038/s41467-018-07379-4
Zillig, W. et al. The Archaebacterium Thermofilum pendens represents, a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst. Appl. Microbiol. 4, 79–87 (1983).
pubmed: 23196301 doi: 10.1016/S0723-2020(83)80035-6
Nakagawa, S. Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 54, 329–335 (2004).
pubmed: 15023940 doi: 10.1099/ijs.0.02826-0
Kozubal, M. A. et al. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J. 7, 622–634 (2013).
pubmed: 23151644 doi: 10.1038/ismej.2012.132
Guy, L., Spang, A., Saw, J. H. & Ettema, T. J. G. ‘Geoarchaeote NAG1’ is a deeply rooting lineage of the archaeal order Thermoproteales rather than a new phylum. ISME J. 8, 1353–1357 (2014).
pubmed: 24522265 pmcid: 4069404 doi: 10.1038/ismej.2014.6
Schleper, C., Jurgens, G. & Jonuscheit, M. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3, 479–488 (2005).
pubmed: 15931166 doi: 10.1038/nrmicro1159
Hallam, S. J. et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc. Natl Acad. Sci. USA 103, 18296–18301 (2006).
pubmed: 17114289 pmcid: 1643844 doi: 10.1073/pnas.0608549103
Konneke, M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO
pubmed: 24843170 pmcid: 4050595 doi: 10.1073/pnas.1402028111
Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).
pubmed: 16177789 doi: 10.1038/nature03911
Walker, C. B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl Acad. Sci. USA 107, 8818–8823 (2010).
pubmed: 20421470 pmcid: 2889351 doi: 10.1073/pnas.0913533107
Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979 (2009).
pubmed: 19794413 doi: 10.1038/nature08465
Baker, B. J., Lesniewski, R. A. & Dick, G. J. Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume. ISME J. 6, 2269–2279 (2012).
pubmed: 22695863 pmcid: 3504958 doi: 10.1038/ismej.2012.64
Palatinszky, M. et al. Cyanate as an energy source for nitrifiers. Nature 524, 105–108 (2015).
pubmed: 26222031 pmcid: 4539577 doi: 10.1038/nature14856
Santoro, A. E., Buchwald, C., McIlvin, M. R. & Casciotti, K. L. Isotopic signature of N
pubmed: 21798895 doi: 10.1126/science.1208239
Metcalf, W. W. et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337, 1104–1107 (2012).
pubmed: 22936780 pmcid: 3466329 doi: 10.1126/science.1219875
Hua, Z.-S. et al. Insights into the ecological roles and evolution of methyl–coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).
pubmed: 31594929 pmcid: 6783470 doi: 10.1038/s41467-019-12574-y
Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).
pubmed: 11206545 doi: 10.1038/35054051
Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).
pubmed: 16915287 doi: 10.1038/nature04983
Pachiadaki, M. G., Yakimov, M. M., LaCono, V., Leadbetter, E. & Edgcomb, V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME J. 8, 2478–2489 (2014).
pubmed: 24950109 pmcid: 4260694 doi: 10.1038/ismej.2014.100
Gubry-Rangin, C. et al. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proc. Natl Acad. Sci. USA 112, 9370–9375 (2015).
pubmed: 26170282 pmcid: 4522744 doi: 10.1073/pnas.1419329112
de la Torre, J. R., Walker, C. B., Ingalls, A. E., Könneke, M. & Stahl, D. A. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol. 10, 810–818 (2008).
pubmed: 18205821 doi: 10.1111/j.1462-2920.2007.01506.x
Durbin, A. M. & Teske, A. Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ. Microbiol. 13, 3219–3234 (2011).
pubmed: 21895908 doi: 10.1111/j.1462-2920.2011.02544.x
Qin, W., Martens-Habbena, W., Kobelt, J. N. & Stahl, D. A. in Bergey’s Manual of Systematics of Archaea and Bacteria (eds Whitman, W. B. et al.) 1–2 (Wiley, 2016).
Stahl, D. A. & de la Torre, J. R. Physiology and diversity of ammonia-oxidizing Archaea. Annu. Rev. Microbiol. 66, 83–101 (2012).
pubmed: 22994489 doi: 10.1146/annurev-micro-092611-150128
Vajrala, N. et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. Proc. Natl Acad. Sci. USA 110, 1006–1011 (2013).
pubmed: 23277575 doi: 10.1073/pnas.1214272110
Stieglmeier, M. et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J. 8, 1135–1146 (2014).
pubmed: 24401864 pmcid: 3996696 doi: 10.1038/ismej.2013.220
Kozlowski, J. A., Stieglmeier, M., Schleper, C., Klotz, M. G. & Stein, L. Y. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J. 10, 1836–1845 (2016).
pubmed: 26882267 pmcid: 5029154 doi: 10.1038/ismej.2016.2
Liu, S. et al. Abiotic conversion of extracellular NH
pubmed: 29039187 doi: 10.1021/acs.est.7b02360
Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).
pubmed: 22927371 pmcid: 3479597 doi: 10.1073/pnas.1203849109
Kubo, K. et al. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012).
pubmed: 22551871 pmcid: 3449235 doi: 10.1038/ismej.2012.37
Meng, J. et al. An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase. ISME J. 3, 106–116 (2009).
pubmed: 18830277 doi: 10.1038/ismej.2008.85
Meng, J. et al. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 8, 650–659 (2014).
pubmed: 24108328 doi: 10.1038/ismej.2013.174
Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. & Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5, 787–797 (2003).
pubmed: 12919414 doi: 10.1046/j.1462-2920.2003.00476.x
Jurgens, G. Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol. Ecol. 34, 45–56 (2000).
pubmed: 11053735
McKay, L. J., Hatzenpichler, R., Inskeep, W. P. & Fields, M. W. Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci. Rep. 7, 7252 (2017).
pubmed: 28775334 pmcid: 5543129 doi: 10.1038/s41598-017-07354-x
Lazar, C. S. et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. 18, 1200–1211 (2016).
pubmed: 26626228 doi: 10.1111/1462-2920.13142
He, Y. et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat. Microbiol. 1, 16035 (2016).
pubmed: 27572832 doi: 10.1038/nmicrobiol.2016.35
Meador, T. B. et al. The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group. Environ. Microbiol. 17, 2441–2458 (2015).
pubmed: 25403417 doi: 10.1111/1462-2920.12716
Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).
pubmed: 26494757 doi: 10.1126/science.aac7745
Yu, T. et al. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc. Natl Acad. Sci. USA 115, 6022–6027 (2018).
pubmed: 29773709 pmcid: 6003339 doi: 10.1073/pnas.1718854115
McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).
pubmed: 30833730 doi: 10.1038/s41564-019-0362-4
Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).
pubmed: 21169198 doi: 10.1093/nar/gkq1228
Beam, J. P. et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community. ISME J. 10, 210–224 (2016).
pubmed: 26140529 doi: 10.1038/ismej.2015.83
Gaiman, N. Norse Mythology (Bloomsbury Publishing, 2017).
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).
pubmed: 25945739 pmcid: 4444528 doi: 10.1038/nature14447
Akıl, C. & Robinson, R. C. Genomes of Asgard archaea encode profilins that regulate actin. Nature 562, 439–443 (2018).
pubmed: 30283132 doi: 10.1038/s41586-018-0548-6
Seitz, K. W., Lazar, C. S., Hinrichs, K.-U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016).
pubmed: 26824177 pmcid: 4918440 doi: 10.1038/ismej.2015.233
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).
pubmed: 28077874 doi: 10.1038/nature21031
Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).
pubmed: 31015394 pmcid: 6478937 doi: 10.1038/s41467-019-09364-x
Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009).
pubmed: 19325621 pmcid: 2819001 doi: 10.1038/nature07958
Hurley, J. H. ESCRTs are everywhere. EMBO J. 34, 2398–2407 (2015).
pubmed: 26311197 pmcid: 4601661 doi: 10.15252/embj.201592484
Ettema, T. J. G., Lindås, A.-C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol. Microbiol. 80, 1052–1061 (2011).
pubmed: 21414041 doi: 10.1111/j.1365-2958.2011.07635.x
Koonin, E. V. & Yutin, N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb. Persp. Biol. 6, a016188 (2014).
doi: 10.1101/cshperspect.a016188
Dalziel, M., Crispin, M., Scanlan, C. N., Zitzmann, N. & Dwek, R. A. Emerging principles for the therapeutic exploitation of glycosylation. Science 343, 1235681 (2014).
pubmed: 24385630 doi: 10.1126/science.1235681
Koga, Y., Kyuragi, T., Nishihara, M. & Sone, N. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J. Mol. Evol. 47, 631–631 (1998).
pubmed: 9797414 doi: 10.1007/PL00006419
Sojo, V., Pomiankowski, A. & Lane, N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLoS Biol. 12, e1001926 (2014).
pubmed: 25116890 pmcid: 4130499 doi: 10.1371/journal.pbio.1001926
Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).
pubmed: 6178009 pmcid: 373208 doi: 10.1128/mr.46.1.1-42.1982
Villanueva, L., Schouten, S. & Sinninghe Damsté, J. S. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the ‘lipid divide’. Environ. Microbiol. 19, 54–69 (2017).
pubmed: 27112361 doi: 10.1111/1462-2920.13361
Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).
pubmed: 30936488 doi: 10.1038/s41564-019-0406-9
Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).
pubmed: 31942073 pmcid: 7015854 doi: 10.1038/s41586-019-1916-6
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).
pubmed: 30148503 doi: 10.1038/nbt.4229
Bird, J. T. et al. Uncultured microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea sediments. mBio 10, e02376–18 (2019).
pubmed: 30992358 pmcid: 6469976 doi: 10.1128/mBio.02376-18
Nielsen, J. L. & Nielsen, P. H. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N.) 4093–4102 (2010).
Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc. Natl Acad. Sci. USA 113, E4069–E4078 (2016).
pubmed: 27357680 pmcid: 4948357 doi: 10.1073/pnas.1603757113
Michalska, K. et al. New aminopeptidase from ‘microbial dark matter’ archaeon. FASEB J. 29, 4071–4079 (2015).
pubmed: 26062601 pmcid: 4550370 doi: 10.1096/fj.15-272906
Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).
pubmed: 23356327 doi: 10.1042/BST20120292
Jay, Z. J. et al. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat. Microbiol. 3, 732–740 (2018).
pubmed: 29760463 doi: 10.1038/s41564-018-0163-1
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
pubmed: 28298430 pmcid: 5411777 doi: 10.1101/gr.213959.116
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).
pubmed: 25218180 doi: 10.1038/nmeth.3103
Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
pubmed: 26500826 pmcid: 4614810 doi: 10.7717/peerj.1319
Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
pubmed: 26336640 pmcid: 4556158 doi: 10.7717/peerj.1165
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
pubmed: 25977477 pmcid: 4484387 doi: 10.1101/gr.186072.114
Pace, N. R. Mapping the tree of life: progress and prospects. Microbiol. Mol. Biol. Rev. 73, 565–576 (2009).
pubmed: 19946133 pmcid: 2786576 doi: 10.1128/MMBR.00033-09
Baker, B. J., Lazar, C. S., Teske, A. P. & Dick, G. J. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3, 14 (2015).
pubmed: 25922666 pmcid: 4411801 doi: 10.1186/s40168-015-0077-6
Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).
pubmed: 26083755 doi: 10.1038/nature14486
Sorek, R. et al. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318, 1449–1452 (2007).
pubmed: 17947550 doi: 10.1126/science.1147112
Petitjean, C., Deschamps, P., López-García, P. & Moreira, D. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol. Evol. 7, 191–204 (2014).
pubmed: 25527841 pmcid: 4316627 doi: 10.1093/gbe/evu274
Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017).
pubmed: 28533395 pmcid: 5468678
Toft, C. & Andersson, S. G. E. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat. Rev. Genet. 11, 465–475 (2010).
pubmed: 20517341 doi: 10.1038/nrg2798
Das, S., Paul, S., Bag, S. K. & Dutta, C. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 7, 186 (2006).
pubmed: 16869956 pmcid: 1574309 doi: 10.1186/1471-2164-7-186
Podar, M. et al. A genomic analysis of the archaeal system Ignicoccus hospitalis–Nanoarchaeum equitans. Genome Biol. 9, R158 (2008).
pubmed: 19000309 pmcid: 2614490 doi: 10.1186/gb-2008-9-11-r158
Hua, Z.-S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).
pubmed: 30026532 pmcid: 6053391 doi: 10.1038/s41467-018-05284-4
Adam, P. S., Borrel, G. & Gribaldo, S. An archaeal origin of the Wood–Ljungdahl HMPT branch and the emergence of bacterial methylotrophy. Nat. Microbiol. 4, 2155–2163 (2019).
pubmed: 31451772 doi: 10.1038/s41564-019-0534-2
Borrel, G., Adam, P. S. & Gribaldo, S. Methanogenesis and the Wood–Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol. Evol. 8, 1706–1711 (2016).
pubmed: 27189979 pmcid: 4943185 doi: 10.1093/gbe/evw114
Chistoserdova, L. The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol. Biol. Evol. 21, 1234–1241 (2004).
pubmed: 15014146 doi: 10.1093/molbev/msh113
Chistoserdova, L. Wide distribution of genes for tetrahydromethanopterin/methanofuran-linked C1 transfer reactions argues for their presence in the common ancestor of bacteria and archaea. Front. Microbiol. 7, 1425 (2016).
pubmed: 27679616 pmcid: 5020050 doi: 10.3389/fmicb.2016.01425
Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006).
pubmed: 16554816 doi: 10.1038/nature04584

Auteurs

Brett J Baker (BJ)

Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA. brett_baker@utexas.edu.

Valerie De Anda (V)

Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA.

Kiley W Seitz (KW)

Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA.

Nina Dombrowski (N)

Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, TX, USA.

Alyson E Santoro (AE)

Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.

Karen G Lloyd (KG)

Microbiology Department, University of Tennessee, Knoxville, TN, USA.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH