Diversity, ecology and evolution of Archaea.
Journal
Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
07
10
2019
accepted:
30
03
2020
pubmed:
6
5
2020
medline:
21
10
2020
entrez:
6
5
2020
Statut:
ppublish
Résumé
Compared to bacteria, our knowledge of archaeal biology is limited. Historically, microbiologists have mostly relied on culturing and single-gene diversity surveys to understand Archaea in nature. However, only six of the 27 currently proposed archaeal phyla have cultured representatives. Advances in genomic sequencing and computational approaches are revolutionizing our understanding of Archaea. The recovery of genomes belonging to uncultured groups from the environment has resulted in the description of several new phyla, many of which are globally distributed and are among the predominant organisms on the planet. In this Review, we discuss how these genomes, together with long-term enrichment studies and elegant in situ measurements, are providing insights into the metabolic capabilities of the Archaea. We also debate how such studies reveal how important Archaea are in mediating an array of ecological processes, including global carbon and nutrient cycles, and how this increase in archaeal diversity has expanded our view of the tree of life and early archaeal evolution, and has provided new insights into the origin of eukaryotes.
Identifiants
pubmed: 32367054
doi: 10.1038/s41564-020-0715-z
pii: 10.1038/s41564-020-0715-z
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
887-900Commentaires et corrections
Type : ErratumIn
Références
Chatton, E. Titres et travaux scientifiques (1906–1937) de Edouard Chatton. (Sète: Impr. E. Sottan, 1938).
Whittaker, R. H. New concepts of kingdoms of organisms. Science 163, 150–160 (1969).
pubmed: 5762760
doi: 10.1126/science.163.3863.150
Woese, C. R. et al. Conservation of primary structure in 16S ribosomal RNA. Nature 254, 83–86 (1975).
pubmed: 1089909
doi: 10.1038/254083a0
Balch, W. E., Magrum, L. J., Fox, G. E., Wolfe, R. S. & Woese, C. R. An ancient divergence among the bacteria. J. Mol. Evol. 9, 305–311 (1977).
pubmed: 408502
doi: 10.1007/BF01796092
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).
pubmed: 270744
pmcid: 432104
doi: 10.1073/pnas.74.11.5088
Woese, C. R., Magrum, L. J. & Fox, G. E. Archaebacteria. J. Mol. Evol. 11, 245–251 (1978).
pubmed: 691075
doi: 10.1007/BF01734485
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).
pubmed: 2112744
pmcid: 54159
doi: 10.1073/pnas.87.12.4576
Doolittle, W. F. & Logsdon, J. M. Jr. Archaeal genomics: do archaea have a mixed heritage? Curr. Biol. 8, R209–R211 (1998).
pubmed: 9512414
doi: 10.1016/S0960-9822(98)70127-7
MacGregor, B. J., Moser, D. P., Alm, E. W., Nealson, K. H. & Stahl, D. A. Crenarchaeota in Lake Michigan sediment. Appl. Environ. Microbiol. 63, 1178–1181 (1997).
pubmed: 9055434
pmcid: 168409
doi: 10.1128/aem.63.3.1178-1181.1997
DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).
pubmed: 1608980
pmcid: 49357
doi: 10.1073/pnas.89.12.5685
Olsen, G. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).
pubmed: 2430518
doi: 10.1146/annurev.mi.40.100186.002005
Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
pubmed: 14527284
doi: 10.1146/annurev.micro.57.030502.090759
Reysenbach, A. L., Giver, L. J., Wickham, G. S. & Pace, N. R. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58, 3417–3418 (1992).
pubmed: 1280061
pmcid: 183115
doi: 10.1128/aem.58.10.3417-3418.1992
Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).
pubmed: 9733676
pmcid: 107498
doi: 10.1128/JB.180.18.4765-4774.1998
Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).
doi: 10.1126/science.276.5313.734
pubmed: 9115194
Baker, B. J. & Dick, G. J. Omic approaches in microbial ecology: charting the unknown. Microbe 8, 353–359 (2013).
Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).
pubmed: 1545865
doi: 10.1038/356148a0
Barns, S. M., Fundgya, R. E., Jeffries, M. W. & Pace, N. R. Remarkable archaeal diversity detected in a Yellowstone national park hot spring environment. Proc. Natl Sci. USA 91, 1609–1613 (1994).
doi: 10.1073/pnas.91.5.1609
Barns, S. M., Delwiche, C. F., Palmer, J. D. & Pace, N. R. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl Acad. Sci. USA 93, 9188–9193 (1996).
pubmed: 8799176
pmcid: 38617
doi: 10.1073/pnas.93.17.9188
Adam, P. S., Borrel, G., Brochier-Armanet, C. & Gribaldo, S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407–2425 (2017).
pubmed: 28777382
pmcid: 5649171
doi: 10.1038/ismej.2017.122
Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).
pubmed: 22495754
doi: 10.1093/bioinformatics/bts174
Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).
pubmed: 14961025
doi: 10.1038/nature02340
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).
pubmed: 15001713
doi: 10.1126/science.1093857
Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009).
pubmed: 19698104
pmcid: 2745766
doi: 10.1186/gb-2009-10-8-r85
Stepanauskas, R. & Sieracki, M. E. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc. Natl Acad. Sci. USA 104, 9052–9057 (2007).
pubmed: 17502618
pmcid: 1885626
doi: 10.1073/pnas.0700496104
Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).
pubmed: 30479325
pmcid: 6258724
doi: 10.1038/s41467-018-07418-0
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
doi: 10.1038/nmicrobiol.2016.48
pubmed: 27572647
Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).
pubmed: 22018741
doi: 10.1016/j.tim.2011.09.002
Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).
pubmed: 23851394
doi: 10.1038/nature12352
Smith, P. H. & Hungate, R. E. Isolation and characterization of Methanobacterium ruminantium n. sp. J. Bacteriol. 75, 713–718 (1958).
pubmed: 13549377
pmcid: 290140
doi: 10.1128/jb.75.6.713-718.1958
Brock, T. D. & Darland, G. K. Limits of microbial existence: temperature and pH. Science 169, 1316–1318 (1970).
pubmed: 5454141
doi: 10.1126/science.169.3952.1316
Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S. & Woese, C. R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl Acad. Sci. USA 74, 4537–4541 (1977).
pubmed: 16592452
pmcid: 431980
doi: 10.1073/pnas.74.10.4537
Wolfe, R. S. Microbial formation of methane. Adv. Microb. Physiol. 6, 107–146 (1971).
pubmed: 4950179
doi: 10.1016/S0065-2911(08)60068-5
Larsen, H. Halophilic and halotolerant microorganisms-an overview and historical perspective. FEMS Microbiol. Lett. 2, 3–7 (1986).
doi: 10.1111/j.1574-6968.1986.tb01835.x
Andrei, A.-Ş., Banciu, H. L. & Oren, A. Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol. Lett. 330, 1–9 (2012).
pubmed: 22339687
doi: 10.1111/j.1574-6968.2012.02526.x
Klenk, H. P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).
pubmed: 9389475
doi: 10.1038/37052
Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH
pubmed: 18664583
pmcid: 2490668
doi: 10.1073/pnas.0712334105
Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).
pubmed: 12032340
pmcid: 124316
doi: 10.1073/pnas.072210299
Wang, Y., Wegener, G., Hou, J., Wang, F. & Xiao, X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat. Microbiol. 4, 595–602 (2019).
pubmed: 30833728
doi: 10.1038/s41564-019-0364-2
Vetriani, C., Reysenbach, A. L. & Doré, J. Recovery and phylogenetic analysis of archaeal rRNA sequences from continental shelf sediments. FEMS Microbiol. Lett. 161, 83–88 (1998).
pubmed: 9561734
doi: 10.1111/j.1574-6968.1998.tb12932.x
Iverson, V. et al. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335, 587–590 (2012).
pubmed: 22301318
doi: 10.1126/science.1212665
Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005 (2016).
pubmed: 27572439
doi: 10.1038/nmicrobiol.2016.5
Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016).
pubmed: 27572167
doi: 10.1038/nmicrobiol.2016.2
Vetriani, C., Jannasch, H. W., MacGregor, B. J., Stahl, D. A. & Reysenbach, A. L. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375–4384 (1999).
pubmed: 10508063
pmcid: 91581
doi: 10.1128/AEM.65.10.4375-4384.1999
Jungbluth, S. P., Amend, J. P. & Rappé, M. S. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Sci. Data 4, 170037 (2017).
pubmed: 28350381
pmcid: 5369317
doi: 10.1038/sdata.2017.37
Carr, S. A. et al. Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the subseafloor crustal biosphere. ISME J. 13, 1457–1468 (2019).
pubmed: 30728468
pmcid: 6775978
doi: 10.1038/s41396-019-0352-9
Chuvochina, M. et al. The importance of designating type material for uncultured taxa. Syst. Appl. Microbiol. 42, 15–21 (2019).
pubmed: 30098831
doi: 10.1016/j.syapm.2018.07.003
Lazar, C. S., Baker, B. J., Seitz, K. W. & Teske, A. P. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J. 11, 1058 (2017).
pubmed: 28321126
pmcid: 5364366
doi: 10.1038/ismej.2017.8
Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).
pubmed: 29379208
pmcid: 6792436
doi: 10.1038/s41564-017-0098-y
Probst, A. J. et al. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nat. Commun. 5, 5497 (2014).
pubmed: 25425419
doi: 10.1038/ncomms6497
Teske, A. & Sørensen, K. B. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2, 3–18 (2008).
pubmed: 18180743
doi: 10.1038/ismej.2007.90
Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001).
pubmed: 11463914
doi: 10.1126/science.1061338
Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).
pubmed: 15353801
doi: 10.1126/science.1100025
Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).
pubmed: 16612380
doi: 10.1038/nature04617
Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).
pubmed: 23892779
doi: 10.1038/nature12375
McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).
pubmed: 26375009
doi: 10.1038/nature15512
Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E. & Orphan, V. J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707 (2016).
pubmed: 26912857
doi: 10.1126/science.aad7154
Laso-Pérez, R. et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016).
pubmed: 27749816
doi: 10.1038/nature20152
Lloyd, K. G., Lapham, L. & Teske, A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl. Environ. Microbiol. 72, 7218–7230 (2006).
pubmed: 16980428
pmcid: 1636178
doi: 10.1128/AEM.00886-06
Maignien, L. et al. Anaerobic oxidation of methane in hypersaline cold seep sediments. FEMS Microbiol. Ecol. 83, 214–231 (2013).
pubmed: 22882187
doi: 10.1111/j.1574-6941.2012.01466.x
Dombrowski, N., Seitz, K. W., Teske, A. P. & Baker, B. J. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5, 106 (2017).
pubmed: 28835260
pmcid: 5569505
doi: 10.1186/s40168-017-0322-2
Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).
pubmed: 30833729
pmcid: 6453112
doi: 10.1038/s41564-019-0363-3
Chen, S.-C. et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568, 108–111 (2019).
pubmed: 30918404
doi: 10.1038/s41586-019-1063-0
Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013).
pubmed: 23808334
doi: 10.1146/annurev-micro-092412-155614
Mwirichia, R. et al. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci. Rep. 6, 19181 (2016).
pubmed: 26758088
pmcid: 4725937
doi: 10.1038/srep19181
Takai, K., Moser, D. P., DeFlaun, M., Onstott, T. C. & Fredrickson, J. K. Archaeal diversity in waters from deep South African gold mines. Appl. Environ. Microbiol. 67, 5750–5760 (2001).
pubmed: 11722932
pmcid: 93369
doi: 10.1128/AEM.67.21.5750-5760.2001
Inagaki, F. et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of okhotsk. Appl. Environ. Microbiol. 69, 7224–7235 (2003).
pubmed: 14660370
pmcid: 309994
doi: 10.1128/AEM.69.12.7224-7235.2003
Parkes, R. J. et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436, 390–394 (2005).
pubmed: 16034418
doi: 10.1038/nature03796
Biddle, J. F. et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl Acad. Sci. USA 103, 3846–3851 (2006).
pubmed: 16505362
pmcid: 1533785
doi: 10.1073/pnas.0600035103
Takai, K. & Horikoshi, K. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297 (1999).
pubmed: 10430559
pmcid: 1460697
doi: 10.1093/genetics/152.4.1285
Reysenbach, A.-L. et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442, 444–447 (2006).
pubmed: 16871216
doi: 10.1038/nature04921
Knittel, K., Lösekann, T., Boetius, A., Kort, R. & Amann, R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 (2005).
pubmed: 15640223
pmcid: 544223
doi: 10.1128/AEM.71.1.467-479.2005
Lloyd, K. G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013).
pubmed: 23535597
doi: 10.1038/nature12033
Dettling, M. D., Yavitt, J. B., Cadillo-Quiroz, H., Sun, C. & Zinder, S. H. Soil–methanogen interactions in two peatlands (Bog, Fen) in central New York State. Geomicrobiol. J. 24, 247–259 (2007).
doi: 10.1080/01490450701456651
Zhou, Z. et al. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J. 13, 885–901 (2019).
pubmed: 30514872
doi: 10.1038/s41396-018-0321-8
Massana, R., DeLong, E. F. & Pedrós-Alió, C. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl. Environ. Microbiol. 66, 1777–1787 (2000).
pubmed: 10788339
pmcid: 101412
doi: 10.1128/AEM.66.5.1777-1787.2000
Fuhrman, J. A. & Davis, A. A. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar. Ecol. Prog. Ser. 150, 275–285 (1997).
doi: 10.3354/meps150275
Martin-Cuadrado, A.-B. et al. A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum. ISME J. 9, 1619–1634 (2015).
pubmed: 25535935
doi: 10.1038/ismej.2014.249
Li, M. et al. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat. Commun. 6, 8933 (2015).
pubmed: 26573375
doi: 10.1038/ncomms9933
Tully, B. J. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nat. Commun. 10, 271 (2019).
pubmed: 30655514
pmcid: 6336850
doi: 10.1038/s41467-018-07840-4
Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663–675 (2019).
pubmed: 30323263
doi: 10.1038/s41396-018-0282-y
Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 10, 2158–2173 (2016).
pubmed: 26953597
pmcid: 4989311
doi: 10.1038/ismej.2016.20
Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).
pubmed: 11986665
doi: 10.1038/417063a
Waters, E. et al. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl Acad. Sci. USA 100, 12984–12988 (2003).
pubmed: 14566062
pmcid: 240731
doi: 10.1073/pnas.1735403100
Baker, B. J. et al. Lineages of acidophilic archaea revealed by community genomic analysis. Science 314, 1933–1935 (2006).
pubmed: 17185602
doi: 10.1126/science.1132690
Baker, B. J. et al. Enigmatic, ultrasmall, uncultivated Archaea. Proc. Natl Acad. Sci. USA 107, 8806–8811 (2010).
pubmed: 20421484
pmcid: 2889320
doi: 10.1073/pnas.0914470107
Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).
pubmed: 21716304
doi: 10.1038/ismej.2011.78
Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).
pubmed: 25702576
doi: 10.1016/j.cub.2015.01.014
Schwank, K. et al. An archaeal symbiont-host association from the deep terrestrial subsurface. ISME J. 13, 2135–2139 (2019).
pubmed: 31048756
pmcid: 6776059
doi: 10.1038/s41396-019-0421-0
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
pubmed: 28894102
doi: 10.1038/s41564-017-0012-7
Bird, J. T., Baker, B. J., Probst, A. J., Podar, M. & Lloyd, K. G. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales. Front. Microbiol. 7, 1221 (2016).
pubmed: 27547202
pmcid: 4975002
doi: 10.3389/fmicb.2016.01221
Krause, S., Bremges, A., Münch, P. C., McHardy, A. C. & Gescher, J. Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms. Sci. Rep. 7, 3289 (2017).
pubmed: 28607432
pmcid: 5468238
doi: 10.1038/s41598-017-03315-6
Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661–14670 (2019).
pubmed: 31253704
pmcid: 6642349
doi: 10.1073/pnas.1905179116
Comolli, L. R., Baker, B. J., Downing, K. H., Siegerist, C. E. & Banfield, J. F. Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J. 3, 159–167 (2009).
pubmed: 18946497
doi: 10.1038/ismej.2008.99
Heimerl, T. et al. A complex endomembrane system in the Archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front. Microbiol. 8, 1072 (2017).
pubmed: 28659892
pmcid: 5468417
doi: 10.3389/fmicb.2017.01072
Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).
pubmed: 28005056
doi: 10.1038/nature21059
Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252 (2008).
pubmed: 18274537
doi: 10.1038/nrmicro1852
Spang, A. et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 18, 331–340 (2010).
pubmed: 20598889
doi: 10.1016/j.tim.2010.06.003
Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).
pubmed: 18535141
pmcid: 2430366
doi: 10.1073/pnas.0801980105
Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).
pubmed: 27694807
doi: 10.1038/nmicrobiol.2016.170
Blöchl, E. et al. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1, 14–21 (1997).
pubmed: 9680332
doi: 10.1007/s007920050010
Cubonová, L., Sandman, K., Hallam, S. J., Delong, E. F. & Reeve, J. N. Histones in crenarchaea. J. Bacteriol. 187, 5482–5485 (2005).
pubmed: 16030242
pmcid: 1196040
doi: 10.1128/JB.187.15.5482-5485.2005
Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv. Mikrobiol. 84, 54–68 (1972).
doi: 10.1007/BF00408082
Zhang, C., Phillips, A. P. R., Wipfler, R. L., Olsen, G. J. & Whitaker, R. J. The essential genome of the crenarchaeal model Sulfolobus islandicus. Nat. Commun. 9, 4908 (2018).
pubmed: 30464174
pmcid: 6249222
doi: 10.1038/s41467-018-07379-4
Zillig, W. et al. The Archaebacterium Thermofilum pendens represents, a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst. Appl. Microbiol. 4, 79–87 (1983).
pubmed: 23196301
doi: 10.1016/S0723-2020(83)80035-6
Nakagawa, S. Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 54, 329–335 (2004).
pubmed: 15023940
doi: 10.1099/ijs.0.02826-0
Kozubal, M. A. et al. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J. 7, 622–634 (2013).
pubmed: 23151644
doi: 10.1038/ismej.2012.132
Guy, L., Spang, A., Saw, J. H. & Ettema, T. J. G. ‘Geoarchaeote NAG1’ is a deeply rooting lineage of the archaeal order Thermoproteales rather than a new phylum. ISME J. 8, 1353–1357 (2014).
pubmed: 24522265
pmcid: 4069404
doi: 10.1038/ismej.2014.6
Schleper, C., Jurgens, G. & Jonuscheit, M. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3, 479–488 (2005).
pubmed: 15931166
doi: 10.1038/nrmicro1159
Hallam, S. J. et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc. Natl Acad. Sci. USA 103, 18296–18301 (2006).
pubmed: 17114289
pmcid: 1643844
doi: 10.1073/pnas.0608549103
Konneke, M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO
pubmed: 24843170
pmcid: 4050595
doi: 10.1073/pnas.1402028111
Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).
pubmed: 16177789
doi: 10.1038/nature03911
Walker, C. B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl Acad. Sci. USA 107, 8818–8823 (2010).
pubmed: 20421470
pmcid: 2889351
doi: 10.1073/pnas.0913533107
Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979 (2009).
pubmed: 19794413
doi: 10.1038/nature08465
Baker, B. J., Lesniewski, R. A. & Dick, G. J. Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume. ISME J. 6, 2269–2279 (2012).
pubmed: 22695863
pmcid: 3504958
doi: 10.1038/ismej.2012.64
Palatinszky, M. et al. Cyanate as an energy source for nitrifiers. Nature 524, 105–108 (2015).
pubmed: 26222031
pmcid: 4539577
doi: 10.1038/nature14856
Santoro, A. E., Buchwald, C., McIlvin, M. R. & Casciotti, K. L. Isotopic signature of N
pubmed: 21798895
doi: 10.1126/science.1208239
Metcalf, W. W. et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337, 1104–1107 (2012).
pubmed: 22936780
pmcid: 3466329
doi: 10.1126/science.1219875
Hua, Z.-S. et al. Insights into the ecological roles and evolution of methyl–coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).
pubmed: 31594929
pmcid: 6783470
doi: 10.1038/s41467-019-12574-y
Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).
pubmed: 11206545
doi: 10.1038/35054051
Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).
pubmed: 16915287
doi: 10.1038/nature04983
Pachiadaki, M. G., Yakimov, M. M., LaCono, V., Leadbetter, E. & Edgcomb, V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME J. 8, 2478–2489 (2014).
pubmed: 24950109
pmcid: 4260694
doi: 10.1038/ismej.2014.100
Gubry-Rangin, C. et al. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proc. Natl Acad. Sci. USA 112, 9370–9375 (2015).
pubmed: 26170282
pmcid: 4522744
doi: 10.1073/pnas.1419329112
de la Torre, J. R., Walker, C. B., Ingalls, A. E., Könneke, M. & Stahl, D. A. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol. 10, 810–818 (2008).
pubmed: 18205821
doi: 10.1111/j.1462-2920.2007.01506.x
Durbin, A. M. & Teske, A. Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ. Microbiol. 13, 3219–3234 (2011).
pubmed: 21895908
doi: 10.1111/j.1462-2920.2011.02544.x
Qin, W., Martens-Habbena, W., Kobelt, J. N. & Stahl, D. A. in Bergey’s Manual of Systematics of Archaea and Bacteria (eds Whitman, W. B. et al.) 1–2 (Wiley, 2016).
Stahl, D. A. & de la Torre, J. R. Physiology and diversity of ammonia-oxidizing Archaea. Annu. Rev. Microbiol. 66, 83–101 (2012).
pubmed: 22994489
doi: 10.1146/annurev-micro-092611-150128
Vajrala, N. et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. Proc. Natl Acad. Sci. USA 110, 1006–1011 (2013).
pubmed: 23277575
doi: 10.1073/pnas.1214272110
Stieglmeier, M. et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J. 8, 1135–1146 (2014).
pubmed: 24401864
pmcid: 3996696
doi: 10.1038/ismej.2013.220
Kozlowski, J. A., Stieglmeier, M., Schleper, C., Klotz, M. G. & Stein, L. Y. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J. 10, 1836–1845 (2016).
pubmed: 26882267
pmcid: 5029154
doi: 10.1038/ismej.2016.2
Liu, S. et al. Abiotic conversion of extracellular NH
pubmed: 29039187
doi: 10.1021/acs.est.7b02360
Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).
pubmed: 22927371
pmcid: 3479597
doi: 10.1073/pnas.1203849109
Kubo, K. et al. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012).
pubmed: 22551871
pmcid: 3449235
doi: 10.1038/ismej.2012.37
Meng, J. et al. An uncultivated crenarchaeota contains functional bacteriochlorophyll a synthase. ISME J. 3, 106–116 (2009).
pubmed: 18830277
doi: 10.1038/ismej.2008.85
Meng, J. et al. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 8, 650–659 (2014).
pubmed: 24108328
doi: 10.1038/ismej.2013.174
Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. & Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5, 787–797 (2003).
pubmed: 12919414
doi: 10.1046/j.1462-2920.2003.00476.x
Jurgens, G. Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol. Ecol. 34, 45–56 (2000).
pubmed: 11053735
McKay, L. J., Hatzenpichler, R., Inskeep, W. P. & Fields, M. W. Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments. Sci. Rep. 7, 7252 (2017).
pubmed: 28775334
pmcid: 5543129
doi: 10.1038/s41598-017-07354-x
Lazar, C. S. et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. 18, 1200–1211 (2016).
pubmed: 26626228
doi: 10.1111/1462-2920.13142
He, Y. et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat. Microbiol. 1, 16035 (2016).
pubmed: 27572832
doi: 10.1038/nmicrobiol.2016.35
Meador, T. B. et al. The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group. Environ. Microbiol. 17, 2441–2458 (2015).
pubmed: 25403417
doi: 10.1111/1462-2920.12716
Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).
pubmed: 26494757
doi: 10.1126/science.aac7745
Yu, T. et al. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc. Natl Acad. Sci. USA 115, 6022–6027 (2018).
pubmed: 29773709
pmcid: 6003339
doi: 10.1073/pnas.1718854115
McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).
pubmed: 30833730
doi: 10.1038/s41564-019-0362-4
Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).
pubmed: 21169198
doi: 10.1093/nar/gkq1228
Beam, J. P. et al. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community. ISME J. 10, 210–224 (2016).
pubmed: 26140529
doi: 10.1038/ismej.2015.83
Gaiman, N. Norse Mythology (Bloomsbury Publishing, 2017).
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).
pubmed: 25945739
pmcid: 4444528
doi: 10.1038/nature14447
Akıl, C. & Robinson, R. C. Genomes of Asgard archaea encode profilins that regulate actin. Nature 562, 439–443 (2018).
pubmed: 30283132
doi: 10.1038/s41586-018-0548-6
Seitz, K. W., Lazar, C. S., Hinrichs, K.-U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016).
pubmed: 26824177
pmcid: 4918440
doi: 10.1038/ismej.2015.233
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).
pubmed: 28077874
doi: 10.1038/nature21031
Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).
pubmed: 31015394
pmcid: 6478937
doi: 10.1038/s41467-019-09364-x
Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009).
pubmed: 19325621
pmcid: 2819001
doi: 10.1038/nature07958
Hurley, J. H. ESCRTs are everywhere. EMBO J. 34, 2398–2407 (2015).
pubmed: 26311197
pmcid: 4601661
doi: 10.15252/embj.201592484
Ettema, T. J. G., Lindås, A.-C. & Bernander, R. An actin-based cytoskeleton in archaea. Mol. Microbiol. 80, 1052–1061 (2011).
pubmed: 21414041
doi: 10.1111/j.1365-2958.2011.07635.x
Koonin, E. V. & Yutin, N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb. Persp. Biol. 6, a016188 (2014).
doi: 10.1101/cshperspect.a016188
Dalziel, M., Crispin, M., Scanlan, C. N., Zitzmann, N. & Dwek, R. A. Emerging principles for the therapeutic exploitation of glycosylation. Science 343, 1235681 (2014).
pubmed: 24385630
doi: 10.1126/science.1235681
Koga, Y., Kyuragi, T., Nishihara, M. & Sone, N. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J. Mol. Evol. 47, 631–631 (1998).
pubmed: 9797414
doi: 10.1007/PL00006419
Sojo, V., Pomiankowski, A. & Lane, N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLoS Biol. 12, e1001926 (2014).
pubmed: 25116890
pmcid: 4130499
doi: 10.1371/journal.pbio.1001926
Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).
pubmed: 6178009
pmcid: 373208
doi: 10.1128/mr.46.1.1-42.1982
Villanueva, L., Schouten, S. & Sinninghe Damsté, J. S. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the ‘lipid divide’. Environ. Microbiol. 19, 54–69 (2017).
pubmed: 27112361
doi: 10.1111/1462-2920.13361
Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).
pubmed: 30936488
doi: 10.1038/s41564-019-0406-9
Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).
pubmed: 31942073
pmcid: 7015854
doi: 10.1038/s41586-019-1916-6
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).
pubmed: 30148503
doi: 10.1038/nbt.4229
Bird, J. T. et al. Uncultured microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea sediments. mBio 10, e02376–18 (2019).
pubmed: 30992358
pmcid: 6469976
doi: 10.1128/mBio.02376-18
Nielsen, J. L. & Nielsen, P. H. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N.) 4093–4102 (2010).
Hatzenpichler, R. et al. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc. Natl Acad. Sci. USA 113, E4069–E4078 (2016).
pubmed: 27357680
pmcid: 4948357
doi: 10.1073/pnas.1603757113
Michalska, K. et al. New aminopeptidase from ‘microbial dark matter’ archaeon. FASEB J. 29, 4071–4079 (2015).
pubmed: 26062601
pmcid: 4550370
doi: 10.1096/fj.15-272906
Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).
pubmed: 23356327
doi: 10.1042/BST20120292
Jay, Z. J. et al. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat. Microbiol. 3, 732–740 (2018).
pubmed: 29760463
doi: 10.1038/s41564-018-0163-1
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
pubmed: 28298430
pmcid: 5411777
doi: 10.1101/gr.213959.116
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).
pubmed: 25218180
doi: 10.1038/nmeth.3103
Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
pubmed: 26500826
pmcid: 4614810
doi: 10.7717/peerj.1319
Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
pubmed: 26336640
pmcid: 4556158
doi: 10.7717/peerj.1165
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
pubmed: 25977477
pmcid: 4484387
doi: 10.1101/gr.186072.114
Pace, N. R. Mapping the tree of life: progress and prospects. Microbiol. Mol. Biol. Rev. 73, 565–576 (2009).
pubmed: 19946133
pmcid: 2786576
doi: 10.1128/MMBR.00033-09
Baker, B. J., Lazar, C. S., Teske, A. P. & Dick, G. J. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3, 14 (2015).
pubmed: 25922666
pmcid: 4411801
doi: 10.1186/s40168-015-0077-6
Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–211 (2015).
pubmed: 26083755
doi: 10.1038/nature14486
Sorek, R. et al. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318, 1449–1452 (2007).
pubmed: 17947550
doi: 10.1126/science.1147112
Petitjean, C., Deschamps, P., López-García, P. & Moreira, D. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol. Evol. 7, 191–204 (2014).
pubmed: 25527841
pmcid: 4316627
doi: 10.1093/gbe/evu274
Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017).
pubmed: 28533395
pmcid: 5468678
Toft, C. & Andersson, S. G. E. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat. Rev. Genet. 11, 465–475 (2010).
pubmed: 20517341
doi: 10.1038/nrg2798
Das, S., Paul, S., Bag, S. K. & Dutta, C. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 7, 186 (2006).
pubmed: 16869956
pmcid: 1574309
doi: 10.1186/1471-2164-7-186
Podar, M. et al. A genomic analysis of the archaeal system Ignicoccus hospitalis–Nanoarchaeum equitans. Genome Biol. 9, R158 (2008).
pubmed: 19000309
pmcid: 2614490
doi: 10.1186/gb-2008-9-11-r158
Hua, Z.-S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).
pubmed: 30026532
pmcid: 6053391
doi: 10.1038/s41467-018-05284-4
Adam, P. S., Borrel, G. & Gribaldo, S. An archaeal origin of the Wood–Ljungdahl HMPT branch and the emergence of bacterial methylotrophy. Nat. Microbiol. 4, 2155–2163 (2019).
pubmed: 31451772
doi: 10.1038/s41564-019-0534-2
Borrel, G., Adam, P. S. & Gribaldo, S. Methanogenesis and the Wood–Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol. Evol. 8, 1706–1711 (2016).
pubmed: 27189979
pmcid: 4943185
doi: 10.1093/gbe/evw114
Chistoserdova, L. The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol. Biol. Evol. 21, 1234–1241 (2004).
pubmed: 15014146
doi: 10.1093/molbev/msh113
Chistoserdova, L. Wide distribution of genes for tetrahydromethanopterin/methanofuran-linked C1 transfer reactions argues for their presence in the common ancestor of bacteria and archaea. Front. Microbiol. 7, 1425 (2016).
pubmed: 27679616
pmcid: 5020050
doi: 10.3389/fmicb.2016.01425
Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516–519 (2006).
pubmed: 16554816
doi: 10.1038/nature04584