Evolution of Class II TCP genes in perianth bearing Piperales and their contribution to the bilateral calyx in Aristolochia.

Aristolochia CINCINNATA CYCLOIDEA Piperales cell division floral symmetry

Journal

The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884

Informations de publication

Date de publication:
10 2020
Historique:
received: 14 03 2020
accepted: 20 05 2020
pubmed: 4 6 2020
medline: 15 5 2021
entrez: 4 6 2020
Statut: ppublish

Résumé

Controlled spatiotemporal cell division and expansion are responsible for floral bilateral symmetry. Genetic studies have pointed to class II TCP genes as major regulators of cell division and floral patterning in model core eudicots. Here we study their evolution in perianth-bearing Piperales and their expression in Aristolochia, a rare occurrence of bilateral perianth outside eudicots and monocots. The evolution of class II TCP genes reveals single-copy CYCLOIDEA-like genes and three paralogs of CINCINNATA (CIN) in early diverging angiosperms. All class II TCP genes have independently duplicated in Aristolochia subgenus Siphisia. Also CIN2 genes duplicated before the diversification of Saruma and Asarum. Sequence analysis shows that CIN1 and CIN3 share motifs with Cyclin proteins and CIN2 genes have lost the miRNA319a binding site. Expression analyses of all paralogs of class II TCP genes in Aristolochia fimbriata point to a role of CYC and CIN genes in maintaining differential perianth expansion during mid- and late flower developmental stages by promoting cell division in the distal and ventral portion of the limb. It is likely that class II TCP genes also contribute to cell division in the leaf, the gynoecium and the ovules in A. fimbriata.

Identifiants

pubmed: 32491205
doi: 10.1111/nph.16719
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

752-769

Informations de copyright

© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.

Références

Aguilar-Martínez JA, Poza-Carrión C, Cubas P. 2007. Arbaidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19: 458-472.
Almeida J, Rocheta M, Galego L. 1997. Genetic control of flower shape in Antirrhinum majus. Development 124: 1387-1392.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.
Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ. 2000. Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell 5: 569-579.
Ballester, P Navarrete-Gómez M, Carbonero P, Oñate-Sánchez L, Ferrándiz C. 2015. Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species. Physiologia Plantarum 155: 21-32.
Bartlett ME, Specht CD. 2011. Changes in expression pattern of the TEOSINTE BRANCHED1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. American Journal of Botany 98: 227-243.
Bliss BJ, Wanke S, Bakarat A, Ayyampalayam S, Wickett N, Wall PK et al. 2013. Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC Plant Biology 13: 13.
Busch A, Zachgo S. 2007. Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences, USA 104: 16714-16719.
Citerne H, Jabbour F, Nadot S, Damerval C. 2010. The evolution of floral symmetry. In: Kader JC, Delseny M, eds. Advances in botanical research. London UK: Academic Press, 85-137.
Citerne H, Reyes E, LeGuilloux M, Delannoy E, Simonnet F, Sauquet H, Weston PH, Nadot S, Damerval C. 2016. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. Annals of Botany 119: 367-378.
Corley SB, Carpenter R, Copsey L, Coen E. 2005. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences, USA 102: 5068-5073.
Crawford BCW, Nath U, Carpenter R, Coen ES. 2004. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiology 135: 244-253.
Cubas P. 2002. Role of TCP genes in the evolution of morphological characters in angiosperms. In: Cronk QCB, Bateman RM, Hawkins JA, eds. Developmental genetics and plant evolution 65. London, UK: The Systematics Association, 247-266.
Cubas P, Lauter N, Doebley J, Coen E. 1999. The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18: 215-222.
Damerval C, Citerne H, Conde e Silva N, Deveaux Y, Delannoy E, Joets J, Simonnet F, Staedler Y, Schönenberger J, Yansouni J et al. 2019. Unraveling the developmental and genetic mechanisms underpinning floral architecture in Proteaceae. Frontiers in Plant Science 10: https://doi.org/10.3389/fpls.2019.00018
Damerval C, Citerne H, Le Guilloux M, Domenichini S, Dutheil J, deCraene LR, Nadot S. 2017. Asymmetric morphogenetic cues along the transverse plane: shift from dissymmetry to zygomorphy in the flower of Fumarioideae. Annals of Botany 100: 391-402.
Damerval C, LeGuilloux M, Jager M, Charon C. 2007. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. Plant Physiology 143: 759-772.
Danisman S, Van Der Wal F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk AD, Muino JM, Cutri L, Dornelas MC et al. 2012. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiology 159: 1511-1523.
Danisman S, van Dijk ADJ, Bimbo A, van der Wal F, Hennig L, de Folter S, Angenent GC, Immink RGH. 2013. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany 64: 5673-5685.
Doebley J. 2004. The genetics of maize evolution. Annual Reviews in Genetics 38: 37-59.
Doebley J, Stec A, Gustus C. 1995. TEOSINTE BRANCHED1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141: 333-346.
Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 86: 485-488.
Efroni I, Blum E, Goldshmidt A, Eshed Y. 2008. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20: 2293-2306.
Elomaa A, Zhao Y, Zhang T. 2018. Flower heads in Asteraceae - recruitment of conserved developmental regulators to control the flower-like inflorescence architecture. Horticulture Research 5: 36.
Endress PK. 2012. The inmense diversity of floral monosymmetry and asymmetry across angiosperms. Botanical Review 78: 345-397.
Ferrándiz C, Liljegren SJ, Yanofsky MF. 2000. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289: 436-438.
Galego L, Almeida J. 2002. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes and Development 16: 880-891.
Gaudin V, Lunness PA, Robert PR, Towers M, Riou-Khamlichi C, Murray JAH et al. 2000. The expression of D-Cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene. Plant Physiology 122: 1137-1148.
González F, Pabón-Mora N. 2015. Trickery flowers: the extraordinary chemical mimicry of Aristolochia to accomplish deception to its pollinators. New Phytologist 206: 10-13.
González F, Stevenson DW. 2000. Perianth development and systematics of Aristolochia. Flora 195: 370-391.
Heery DM, Kalkhoven E, Hoare S, Parker MG. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387: 733-736.
Hileman LC. 2014. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philosophical Transactions of the Royal Society B: Biological Sciences 369: 1-10.
Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518-522.
Horn S, Pabón-Mora N, Theuß VS, Busch A, Zachgo S. 2015. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. The Plant Journal 81: 559-571.
Howarth DG, Donoghue MJ. 2006. Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences, USA 103: 9101-9106.
Howarth DG, Martins T, Chimney E, Donoghue MJ. 2011. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Annals of Botany 107: 1521-1532.
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589.
Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059-3066.
Kosugi S, Ohashi Y. 2002. DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal 30: 337-348.
Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. 2007. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19: 473-484.
Leppik EE. 1972. Origin and evolution of bilateral symmetry in flowers. Evolutionary Biology 5: 49-85.
Li C, Potuschak T, Colón-Carmona A, Gutiérrez RA, Doerner P. 2005. Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proceedings of the National Academy of Sciences, USA 102: 12978-12983.
Li M, Zhang D, Gao Q, Luo Y, Zhang H, Ma B, Chen C, Whibley A, Zhang Y, Cao Y et al. 2019. Genome structure and evolution of Antirrhinum majus L. Nature Plants 5: 174-183.
Li S. 2015. The Arabidopsis thaliana TCP transcription factors: a broadening horizon beyond development. Plant Signaling and Behavior 10: e1044192.
Li S, Gutsche N, Zachgo S. 2011. The ROXY1 C-Terminal L**LL motif is essential for the interaction with TGA transcription factors. Plant Physiology 157: 2056-2068.
Lin YF, Chen YY, Hsiao YY, Shen CY, Hsu JL, Yeh CM et al. 2016. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. Journal of Experimental Botany 67: 5051-5066.
Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E. 1999. Control of organ asymmetry in flowers of Antirrhinum. Cell 99: 367-376.
Luo D, Carpenter R, Vincent C, Copsey L, Coen E. 1996. Origin of floral asymmetry in Antirrhinum. Nature 383: 794-799.
Madrigal Y, Alzate JF, Pabón-Mora N. 2017. Evolution and expression patterns of TCP genes in Asparagales. Frontiers in Plant Science 8: 9.
Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15: 31-39.
Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. [WWW document] URL http://www.phylo.org [accessed 5 June 2020].
Mondragón-Palomino M, Trontin C. 2011. High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots. Annals of Botany 107: 1533-1544.
Nath U, Crawford BC, Carpenter R, Coen E. 2003. Genetic control of surface curvature. Science 299: 1404-1407.
Navaud O, Dabos P, Carnus E, Tremousaygue D, Hervé C. 2007. TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution 65: 23-33.
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.
Pabón-Mora N, Suárez-Baron H, Ambrose BA, González F. 2015. Flower development and perianth identity candidate genes in the basal angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). Frontiers in Plant Science 6: 1095.
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. 2003. Control of leaf morphogenesis by micro-RNAs. Nature 425: 257-263.
Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG et al. 2014. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology 14: 157.
Pérez-Mesa P, Ortíz-Ramírez CI, González F, Ferrándiz C, Pabón-Mora N. 2020. Expression of gynoecium patterning transcription factors in Aristolochia fimbriata (Aristolochiaceae) and their contribution to gynostemium development. EvoDevo 11: 4.
Preston JC, Hileman LC. 2012. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo 3: 6.
Preston JC, Kost MA, Hileman LC. 2009. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phytologist 182: 751-762.
Rambaut A. 2014. FigTree: tree figure drawing tool. [WWW document] URL http://tree.bio.ed.ac.uk/software/figtree/.
Rudall PJ, Bateman RM. 2004. Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytologist 162: 25-44.
Sargent RD. 2004. Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society of London 271: 603-608.
Suárez-Baron H, Alzate JF, González F, Ambrose BA, Pabón-Mora N. 2019. Genetic mechanisms underlying perianth epidermal elaboration of Aristolochia ringens Vahl (Aristolochiaceae). Flora 253: 56-66.
Suárez-Baron H, Pérez-Mesa P, Ambrose BA, González F, Pabón-Mora N. 2016. Deep into the Aristolochia flower: expression of C, D and E class genes in Aristolochia fimbriata (Aristolochiaceae). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 328: 55-71.
Viola I, Uberti-Manassero N, Ripoll R, González D. 2011. The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochemical Journal 435: 143-155.
Wang J, Wang Y, Luo D. 2010. LjCYC genes constitute floral dorsoventral asymmetry in Lotus japonicus. Journal of Integrative Plant Biology 52: 959-970.
Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang D. 2009. RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiology 149: 235-244.
Zhang W, Kramer EM, Davis CC. 2010. Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the National Academy of Sciences, USA 107: 6388-6393.
Zhang W, Steinmann VW, Nikolov L, Kramer EM, Davis CC. 2013. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. Frontiers in Plant Science 4: 302.

Auteurs

Natalia Pabón-Mora (N)

Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia.
Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany.

Yesenia Madrigal (Y)

Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia.

Juan F Alzate (JF)

Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.

Barbara A Ambrose (BA)

The New York Botanical Garden, Bronx, NY, 10458, USA.

Cristina Ferrándiz (C)

Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Valencia, 46022, Spain.

Stefan Wanke (S)

Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany.

Christoph Neinhuis (C)

Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany.

Favio González (F)

Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH