Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
04 06 2020
04 06 2020
Historique:
received:
14
04
2019
accepted:
06
05
2020
entrez:
6
6
2020
pubmed:
6
6
2020
medline:
19
8
2020
Statut:
epublish
Résumé
Increased grain yield will be critical to meet the growing demand for food, and could be achieved by delaying crop senescence. Here, via quantitative trait locus (QTL) mapping, we uncover the genetic basis underlying distinct life cycles and senescence patterns of two rice subspecies, indica and japonica. Promoter variations in the Stay-Green (OsSGR) gene encoding the chlorophyll-degrading Mg
Identifiants
pubmed: 32499482
doi: 10.1038/s41467-020-16573-2
pii: 10.1038/s41467-020-16573-2
pmc: PMC7272468
doi:
Substances chimiques
RNA, Messenger
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2819Références
Wing, R. A., Purugganan, M. D. & Zhang, Q. The rice genome revolution: from an ancient grain to green super rice. Nat. Rev. Genet. 19, 505–517 (2018).
pubmed: 29872215
doi: 10.1038/s41576-018-0024-z
Huang, X. et al. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629–633 (2016).
pubmed: 27602511
doi: 10.1038/nature19760
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).
pubmed: 23250423
doi: 10.1038/ncomms2296
Hu, C. et al. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci. Rep. 4, 50–67 (2014).
Abdelkhalik, A. F., Shishido, R., Nomura, K. & Ikehashi, H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor. Appl Genet 110, 1226–1235 (2005).
pubmed: 15765224
doi: 10.1007/s00122-005-1955-2
Yoshida, S. Fundamentals of Rice Crop Science, Chapter 1 (International Rice Research Institute, Los Baños, 1981).
Bonser, S. P. & Ladd, B. The evolution of competitive strategies in annual plants. Plant Ecol. 212, 1441–1449 (2011).
doi: 10.1007/s11258-011-9919-x
Guo, J. et al. Overcoming inter-subspecific hybrid sterility in rice by developing indica‐compatible japonica lines. Sci. Rep. 6, 26878 (2016).
pubmed: 27246799
pmcid: 4887987
doi: 10.1038/srep26878
Gregersen, P. L., Culetic, A., Boschian, L. & Krupinska, K. Plant senescence and crop productivity. Plant Mol. Biol. 82, 603–622 (2013).
pubmed: 23354836
doi: 10.1007/s11103-013-0013-8
Leng, Y., Ye, G. & Zeng, D. Genetic dissection of leaf senescence in rice. Int J. Mol. Sci. 18, 2686 (2017).
pmcid: 5751288
doi: 10.3390/ijms18122686
Gan, S. Concepts and types of senescence in plants. Methods Mol. Biol. 1744, 3–8 (2018).
pubmed: 29392652
doi: 10.1007/978-1-4939-7672-0_1
Thomas, H. & Ougham, H. The stay-green trait. J. Exp. Bot. 65, 3889–3900 (2014).
pubmed: 24600017
doi: 10.1093/jxb/eru037
Park, S. Y. et al. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19, 1649–1664 (2007).
pubmed: 17513504
pmcid: 1913741
doi: 10.1105/tpc.106.044891
Kuai, B., Chen, J. & Hörtensteiner, S. The biochemistry and molecular biology of chlorophyll breakdown. J. Exp. Bot. 69, 751–767 (2018).
pubmed: 28992212
doi: 10.1093/jxb/erx322
Jiang, H. et al. Molecular cloning and function analysis of the stay green gene in rice. Plant J. 52, 197–209 (2007).
pubmed: 17714430
doi: 10.1111/j.1365-313X.2007.03221.x
Zhao, Y. et al. New alleles for chlorophyll content and stay-green traits revealed by a genome wide association study in rice (Oryza sativa). Sci. Rep. 9, 2541 (2019).
pubmed: 30796281
pmcid: 6384888
doi: 10.1038/s41598-019-39280-5
Zhang, C. F., Peng, S. B. & Laza, R. C. Senescence of top three leaves in field-grown rice plants. J. Plant Nutr. 26, 2453–2468 (2003).
doi: 10.1081/PLN-120025472
Lee, S. et al. Molecular bases for differential aging programs between flag and second leaves during grain-filling in rice. Sci. Rep. 7, 8792 (2017).
pubmed: 28821707
pmcid: 5562787
doi: 10.1038/s41598-017-07035-9
Shimoda, Y., Ito, H. & Tanaka, A. Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. Plant Cell 28, 2147–2160 (2016).
pubmed: 27604697
pmcid: 5059807
doi: 10.1105/tpc.16.00428
Ren, G. et al. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 144, 1429–1441 (2007).
pubmed: 17468209
pmcid: 1914121
doi: 10.1104/pp.107.100172
Zhao, J. et al. OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS ONE 7, e43705 (2012).
pubmed: 22912900
pmcid: 3422346
doi: 10.1371/journal.pone.0043705
Kim, H. et al. Circadian control of ORE1 by PRR9 positively regulates leaf senescence in Arabidopsis. Proc. Natl Acad. Sci. USA 115, 8448–8453 (2018).
pubmed: 30065116
doi: 10.1073/pnas.1722407115
Zhang, C. et al. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant Biol. 11, 11 (2011).
pubmed: 21226963
pmcid: 3030531
doi: 10.1186/1471-2229-11-11
Liang, C. et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl Acad. Sci. USA 111, 10013–10018 (2014).
pubmed: 24951508
doi: 10.1073/pnas.1321568111
Sato, Y., Morita, R., Nishimura, M., Yamaguchi, H. & Kusaba, M. Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc. Natl Acad. Sci. USA 104, 14169–14174 (2007).
pubmed: 17709752
doi: 10.1073/pnas.0705521104
Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S. & McCouch, S. Genetic structure and diversity in Oryza sativa L. Genetics 169, 1631–1638 (2005).
pubmed: 15654106
pmcid: 1449546
doi: 10.1534/genetics.104.035642
Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).
doi: 10.1038/nature11532
pubmed: 23034647
Al-Tamimi, N. et al. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 7, 13342 (2016).
pubmed: 27853175
pmcid: 5118543
doi: 10.1038/ncomms13342
Rajput, A., Rajput, S. S. & Jha, G. Physiological parameters leaf area index, crop growth rate, relative growth rate and net assimilation rate of different varieties of rice grown under different planting geometries and depths in SRI. Int. J. Pure Appl. Biosci. 5, 362–367 (2017).
doi: 10.18782/2320-7051.2472
Noguero, M., Atif, R. M., Ochatt, S. & Thompson, R. D. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci. 209, 32–45 (2013).
pubmed: 23759101
doi: 10.1016/j.plantsci.2013.03.016
Ramkumar, M. et al. A novel stay-green mutant of rice with delayed leaf senescence and better harvest index confers drought tolerance. Plants 8, 375 (2019).
pmcid: 6843539
doi: 10.3390/plants8100375
Thomas, H. Senescence, ageing and death of the whole plant. N. Phytol. 197, 696–711 (2013).
doi: 10.1111/nph.12047
Kim, T. H. et al. Drought-tolerant QTL qVDT11 leads to stable tiller formation under drought stress conditions in rice. Plant Sci. 256, 131–138 (2017).
pubmed: 28167026
doi: 10.1016/j.plantsci.2016.11.008
Furuta, T., Ashikari, M., Jena, K. K., Doi, K. & Reuscher, S. Adapting genotyping-by-sequencing for rice F2 populations. G3 (Bethesda) 7, 881–893 (2017).
doi: 10.1534/g3.116.038190
Bresson, J., Bieker, S., Riester, L., Doll, J. & Zentgraf, U. A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. J. Exp. Bot. 69, 769–786 (2018).
pubmed: 28992225
doi: 10.1093/jxb/erx246
Kim, S. R., Lee, D. Y., Yang, J. I., Moon, S. & An, G. Cloning vectors for rice. J. Plant Biol. 52, 73–78 (2009).
doi: 10.1007/s12374-008-9008-4
Lee, S., Jeon, J. S., Jung, K. H. & An, G. Binary vector for efficient transformation of rice. J. Plant Biol. 42, 310–316 (1999).
doi: 10.1007/BF03030346
Miki, D. & Shimamoto, K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 45, 490–495 (2004).
pubmed: 15111724
doi: 10.1093/pcp/pch048
Miao, J. et al. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233–1236 (2013).
pubmed: 23999856
pmcid: 3790239
doi: 10.1038/cr.2013.123
Saika, H. & Toki, S. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep. 29, 1351–1364 (2010).
pubmed: 20853107
pmcid: 2978894
doi: 10.1007/s00299-010-0921-x
Jeon, J. S. et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570 (2000).
pubmed: 10886776
doi: 10.1046/j.1365-313x.2000.00767.x
Jeong, D. H. et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132 (2006).
pubmed: 16367959
doi: 10.1111/j.1365-313X.2005.02610.x
Leuzinger, K. et al. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J. Vis. Exp. 77, e50521 (2013).
Cho, J. I. et al. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol. 149, 745–759 (2009).
pubmed: 19010999
pmcid: 2633841
doi: 10.1104/pp.108.131227
Choi, S. C. et al. Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol. 164, 1326–1337 (2014).
pubmed: 24420930
pmcid: 3938623
doi: 10.1104/pp.113.228049
Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 20, 3901–3907 (1987).
doi: 10.1002/j.1460-2075.1987.tb02730.x
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
pubmed: 24132122
pmcid: 3840312
doi: 10.1093/molbev/mst197
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 4103590
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303, 3997 (2013).
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).
doi: 10.1186/s12859-014-0356-4
Fumagalli, M., Vieira, F. G., Linderoth, T. & Nielsen, R. ngsTools: methods for population genetics analyses from next-generation sequencing data. Bioinformatics 30, 1486–1487 (2014).
pubmed: 24458950
pmcid: 4016704
doi: 10.1093/bioinformatics/btu041
Choi, J. Y. & Purugganan, M. D. Multiple origin but single domestication led to Oryza sativa. G3 (Bethesda) 8, 797–803 (2018).
doi: 10.1534/g3.117.300334
Vieira, F. G., Lassalle, F., Korneliussen, T. S. & Fumagalli, M. Improving the estimation of genetic distances from next-generation sequencing data. Biol. J. Linn. Soc. 117, 139–149 (2016).
doi: 10.1111/bij.12511
Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).
pubmed: 26130081
pmcid: 4576710
doi: 10.1093/molbev/msv150