Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
04 06 2020
Historique:
received: 14 04 2019
accepted: 06 05 2020
entrez: 6 6 2020
pubmed: 6 6 2020
medline: 19 8 2020
Statut: epublish

Résumé

Increased grain yield will be critical to meet the growing demand for food, and could be achieved by delaying crop senescence. Here, via quantitative trait locus (QTL) mapping, we uncover the genetic basis underlying distinct life cycles and senescence patterns of two rice subspecies, indica and japonica. Promoter variations in the Stay-Green (OsSGR) gene encoding the chlorophyll-degrading Mg

Identifiants

pubmed: 32499482
doi: 10.1038/s41467-020-16573-2
pii: 10.1038/s41467-020-16573-2
pmc: PMC7272468
doi:

Substances chimiques

RNA, Messenger 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2819

Références

Wing, R. A., Purugganan, M. D. & Zhang, Q. The rice genome revolution: from an ancient grain to green super rice. Nat. Rev. Genet. 19, 505–517 (2018).
pubmed: 29872215 doi: 10.1038/s41576-018-0024-z
Huang, X. et al. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629–633 (2016).
pubmed: 27602511 doi: 10.1038/nature19760
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).
pubmed: 23250423 doi: 10.1038/ncomms2296
Hu, C. et al. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci. Rep. 4, 50–67 (2014).
Abdelkhalik, A. F., Shishido, R., Nomura, K. & Ikehashi, H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor. Appl Genet 110, 1226–1235 (2005).
pubmed: 15765224 doi: 10.1007/s00122-005-1955-2
Yoshida, S. Fundamentals of Rice Crop Science, Chapter 1 (International Rice Research Institute, Los Baños, 1981).
Bonser, S. P. & Ladd, B. The evolution of competitive strategies in annual plants. Plant Ecol. 212, 1441–1449 (2011).
doi: 10.1007/s11258-011-9919-x
Guo, J. et al. Overcoming inter-subspecific hybrid sterility in rice by developing indica‐compatible japonica lines. Sci. Rep. 6, 26878 (2016).
pubmed: 27246799 pmcid: 4887987 doi: 10.1038/srep26878
Gregersen, P. L., Culetic, A., Boschian, L. & Krupinska, K. Plant senescence and crop productivity. Plant Mol. Biol. 82, 603–622 (2013).
pubmed: 23354836 doi: 10.1007/s11103-013-0013-8
Leng, Y., Ye, G. & Zeng, D. Genetic dissection of leaf senescence in rice. Int J. Mol. Sci. 18, 2686 (2017).
pmcid: 5751288 doi: 10.3390/ijms18122686
Gan, S. Concepts and types of senescence in plants. Methods Mol. Biol. 1744, 3–8 (2018).
pubmed: 29392652 doi: 10.1007/978-1-4939-7672-0_1
Thomas, H. & Ougham, H. The stay-green trait. J. Exp. Bot. 65, 3889–3900 (2014).
pubmed: 24600017 doi: 10.1093/jxb/eru037
Park, S. Y. et al. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19, 1649–1664 (2007).
pubmed: 17513504 pmcid: 1913741 doi: 10.1105/tpc.106.044891
Kuai, B., Chen, J. & Hörtensteiner, S. The biochemistry and molecular biology of chlorophyll breakdown. J. Exp. Bot. 69, 751–767 (2018).
pubmed: 28992212 doi: 10.1093/jxb/erx322
Jiang, H. et al. Molecular cloning and function analysis of the stay green gene in rice. Plant J. 52, 197–209 (2007).
pubmed: 17714430 doi: 10.1111/j.1365-313X.2007.03221.x
Zhao, Y. et al. New alleles for chlorophyll content and stay-green traits revealed by a genome wide association study in rice (Oryza sativa). Sci. Rep. 9, 2541 (2019).
pubmed: 30796281 pmcid: 6384888 doi: 10.1038/s41598-019-39280-5
Zhang, C. F., Peng, S. B. & Laza, R. C. Senescence of top three leaves in field-grown rice plants. J. Plant Nutr. 26, 2453–2468 (2003).
doi: 10.1081/PLN-120025472
Lee, S. et al. Molecular bases for differential aging programs between flag and second leaves during grain-filling in rice. Sci. Rep. 7, 8792 (2017).
pubmed: 28821707 pmcid: 5562787 doi: 10.1038/s41598-017-07035-9
Shimoda, Y., Ito, H. & Tanaka, A. Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. Plant Cell 28, 2147–2160 (2016).
pubmed: 27604697 pmcid: 5059807 doi: 10.1105/tpc.16.00428
Ren, G. et al. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 144, 1429–1441 (2007).
pubmed: 17468209 pmcid: 1914121 doi: 10.1104/pp.107.100172
Zhao, J. et al. OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS ONE 7, e43705 (2012).
pubmed: 22912900 pmcid: 3422346 doi: 10.1371/journal.pone.0043705
Kim, H. et al. Circadian control of ORE1 by PRR9 positively regulates leaf senescence in Arabidopsis. Proc. Natl Acad. Sci. USA 115, 8448–8453 (2018).
pubmed: 30065116 doi: 10.1073/pnas.1722407115
Zhang, C. et al. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant Biol. 11, 11 (2011).
pubmed: 21226963 pmcid: 3030531 doi: 10.1186/1471-2229-11-11
Liang, C. et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl Acad. Sci. USA 111, 10013–10018 (2014).
pubmed: 24951508 doi: 10.1073/pnas.1321568111
Sato, Y., Morita, R., Nishimura, M., Yamaguchi, H. & Kusaba, M. Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc. Natl Acad. Sci. USA 104, 14169–14174 (2007).
pubmed: 17709752 doi: 10.1073/pnas.0705521104
Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S. & McCouch, S. Genetic structure and diversity in Oryza sativa L. Genetics 169, 1631–1638 (2005).
pubmed: 15654106 pmcid: 1449546 doi: 10.1534/genetics.104.035642
Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).
doi: 10.1038/nature11532 pubmed: 23034647
Al-Tamimi, N. et al. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 7, 13342 (2016).
pubmed: 27853175 pmcid: 5118543 doi: 10.1038/ncomms13342
Rajput, A., Rajput, S. S. & Jha, G. Physiological parameters leaf area index, crop growth rate, relative growth rate and net assimilation rate of different varieties of rice grown under different planting geometries and depths in SRI. Int. J. Pure Appl. Biosci. 5, 362–367 (2017).
doi: 10.18782/2320-7051.2472
Noguero, M., Atif, R. M., Ochatt, S. & Thompson, R. D. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci. 209, 32–45 (2013).
pubmed: 23759101 doi: 10.1016/j.plantsci.2013.03.016
Ramkumar, M. et al. A novel stay-green mutant of rice with delayed leaf senescence and better harvest index confers drought tolerance. Plants 8, 375 (2019).
pmcid: 6843539 doi: 10.3390/plants8100375
Thomas, H. Senescence, ageing and death of the whole plant. N. Phytol. 197, 696–711 (2013).
doi: 10.1111/nph.12047
Kim, T. H. et al. Drought-tolerant QTL qVDT11 leads to stable tiller formation under drought stress conditions in rice. Plant Sci. 256, 131–138 (2017).
pubmed: 28167026 doi: 10.1016/j.plantsci.2016.11.008
Furuta, T., Ashikari, M., Jena, K. K., Doi, K. & Reuscher, S. Adapting genotyping-by-sequencing for rice F2 populations. G3 (Bethesda) 7, 881–893 (2017).
doi: 10.1534/g3.116.038190
Bresson, J., Bieker, S., Riester, L., Doll, J. & Zentgraf, U. A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. J. Exp. Bot. 69, 769–786 (2018).
pubmed: 28992225 doi: 10.1093/jxb/erx246
Kim, S. R., Lee, D. Y., Yang, J. I., Moon, S. & An, G. Cloning vectors for rice. J. Plant Biol. 52, 73–78 (2009).
doi: 10.1007/s12374-008-9008-4
Lee, S., Jeon, J. S., Jung, K. H. & An, G. Binary vector for efficient transformation of rice. J. Plant Biol. 42, 310–316 (1999).
doi: 10.1007/BF03030346
Miki, D. & Shimamoto, K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 45, 490–495 (2004).
pubmed: 15111724 doi: 10.1093/pcp/pch048
Miao, J. et al. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233–1236 (2013).
pubmed: 23999856 pmcid: 3790239 doi: 10.1038/cr.2013.123
Saika, H. & Toki, S. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep. 29, 1351–1364 (2010).
pubmed: 20853107 pmcid: 2978894 doi: 10.1007/s00299-010-0921-x
Jeon, J. S. et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561–570 (2000).
pubmed: 10886776 doi: 10.1046/j.1365-313x.2000.00767.x
Jeong, D. H. et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132 (2006).
pubmed: 16367959 doi: 10.1111/j.1365-313X.2005.02610.x
Leuzinger, K. et al. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J. Vis. Exp. 77, e50521 (2013).
Cho, J. I. et al. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol. 149, 745–759 (2009).
pubmed: 19010999 pmcid: 2633841 doi: 10.1104/pp.108.131227
Choi, S. C. et al. Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol. 164, 1326–1337 (2014).
pubmed: 24420930 pmcid: 3938623 doi: 10.1104/pp.113.228049
Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 20, 3901–3907 (1987).
doi: 10.1002/j.1460-2075.1987.tb02730.x
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
pubmed: 24132122 pmcid: 3840312 doi: 10.1093/molbev/mst197
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 4103590 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 1303, 3997 (2013).
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).
doi: 10.1186/s12859-014-0356-4
Fumagalli, M., Vieira, F. G., Linderoth, T. & Nielsen, R. ngsTools: methods for population genetics analyses from next-generation sequencing data. Bioinformatics 30, 1486–1487 (2014).
pubmed: 24458950 pmcid: 4016704 doi: 10.1093/bioinformatics/btu041
Choi, J. Y. & Purugganan, M. D. Multiple origin but single domestication led to Oryza sativa. G3 (Bethesda) 8, 797–803 (2018).
doi: 10.1534/g3.117.300334
Vieira, F. G., Lassalle, F., Korneliussen, T. S. & Fumagalli, M. Improving the estimation of genetic distances from next-generation sequencing data. Biol. J. Linn. Soc. 117, 139–149 (2016).
doi: 10.1111/bij.12511
Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).
pubmed: 26130081 pmcid: 4576710 doi: 10.1093/molbev/msv150

Auteurs

Dongjin Shin (D)

Department of Southern Area Crop Science, National Institute of Crop Science (NICS), RDA, Miryang, Republic of Korea.

Sichul Lee (S)

Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea. sciron@ibs.re.kr.

Tae-Heon Kim (TH)

Department of Southern Area Crop Science, National Institute of Crop Science (NICS), RDA, Miryang, Republic of Korea.

Jong-Hee Lee (JH)

Department of Southern Area Crop Science, National Institute of Crop Science (NICS), RDA, Miryang, Republic of Korea.

Joonheum Park (J)

Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea.

Jinwon Lee (J)

Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea.

Ji Yoon Lee (JY)

Department of Southern Area Crop Science, National Institute of Crop Science (NICS), RDA, Miryang, Republic of Korea.

Lae-Hyeon Cho (LH)

Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea.

Jae Young Choi (JY)

Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.

Wonhee Lee (W)

Department of New Biology, DGIST, Daegu, Republic of Korea.

Ji-Hwan Park (JH)

Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea.

Dae-Woo Lee (DW)

Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea.

Hisashi Ito (H)

Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.

Dae Heon Kim (DH)

Department of Biology, Sunchon National University, Sunchon, Republic of Korea.

Ayumi Tanaka (A)

Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.

Jun-Hyeon Cho (JH)

Department of Southern Area Crop Science, National Institute of Crop Science (NICS), RDA, Miryang, Republic of Korea.

You-Chun Song (YC)

Department of Southern Area Crop Science, National Institute of Crop Science (NICS), RDA, Miryang, Republic of Korea.

Daehee Hwang (D)

Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea.
Department of New Biology, DGIST, Daegu, Republic of Korea.

Michael D Purugganan (MD)

Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.

Jong-Seong Jeon (JS)

Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea.

Gynheung An (G)

Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea.

Hong Gil Nam (HG)

Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea. nam@dgist.ac.kr.
Department of New Biology, DGIST, Daegu, Republic of Korea. nam@dgist.ac.kr.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation

Classifications MeSH