Phylogeny, evolution, and potential ecological relationship of cytochrome CYP52 enzymes in Saccharomycetales yeasts.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
24 06 2020
Historique:
received: 02 12 2019
accepted: 07 05 2020
entrez: 26 6 2020
pubmed: 26 6 2020
medline: 22 12 2020
Statut: epublish

Résumé

Cytochrome P450s from the CYP52 family participate in the assimilation of alkanes and fatty acids in fungi. In this work, the evolutionary history of a set of orthologous and paralogous CYP52 proteins from Saccharomycetales yeasts was inferred. Further, the phenotypic assimilation profiles were related with the distribution of cytochrome CYP52 members among species. The maximum likelihood phylogeny of CYP52 inferred proteins reveled a frequent ancient and modern duplication and loss events that generated orthologous and paralogous groups. Phylogeny and assimilation profiles of alkanes and fatty acids showed a family expansion in yeast isolated from hydrophobic-rich environments. Docking analysis of deduced ancient CYP52 proteins suggests that the most ancient function was the oxidation of C4-C11 alkanes, while the oxidation of >10 carbon alkanes and fatty acids is a derived character. The ancient CYP52 paralogs displayed partial specialization and promiscuous interaction with hydrophobic substrates. Additionally, functional optimization was not evident. Changes in the interaction of ancient CYP52 with different alkanes and fatty acids could be associated with modifications in spatial orientations of the amino acid residues that comprise the active site. The extended family of CYP52 proteins is likely evolving toward functional specialization, and certain redundancy for substrates is being maintained.

Identifiants

pubmed: 32581293
doi: 10.1038/s41598-020-67200-5
pii: 10.1038/s41598-020-67200-5
pmc: PMC7314818
doi:

Substances chimiques

Alkanes 0
Fatty Acids 0
Fungal Proteins 0
Cytochrome P-450 Enzyme System 9035-51-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10269

Références

Werck-Reichhart, D. & Feyereisen, R. Cytochromes P450: a success story. Genome Biol. 1, REVIEWS3003 (2000).
pubmed: 11178272 pmcid: 138896 doi: 10.1186/gb-2000-1-6-reviews3003
Nelson, D. R. A world of cytochrome P450s. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120430 (2013).
pubmed: 23297353 pmcid: 3538420 doi: 10.1098/rstb.2012.0430
Payne, A. H. Hormonal regulation of cytochrome P450 enzymes, cholesterol side-chain cleavage and 17 alpha-hydroxylase/C17-20 lyase in Leydig cells. Biol. Reprod. 42, 399–404 (1990).
pubmed: 2160293 doi: 10.1095/biolreprod42.3.399
Mizutani, M. Impacts of diversification of cytochrome P450 on plant metabolism. Biol. Pharm. Bulletin 35, 824–832 (2012).
doi: 10.1248/bpb.35.824
Käppeli, O. Cytochromes P-450 of yeasts. Microbiol. Rev. 50, 244–258 (1986).
pubmed: 3534536 pmcid: 373070 doi: 10.1128/MMBR.50.3.244-258.1986
Anzenbacher, P. & Anzenbacherová, E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life. Sci. 58, 737–747 (2001).
pubmed: 11437235 doi: 10.1007/PL00000897
Chen, W. et al. Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 6, 1620–1634 (2014).
pubmed: 24966179 pmcid: 4122930 doi: 10.1093/gbe/evu132
Fukuda, R. Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. Biosci. Biotechnol. Biochem. 77, 1149–1154 (2013).
pubmed: 23748781 doi: 10.1271/bbb.130164
Rojo, F. Enzymes for aerobic degradation of alkanes. In Handbook of Hydrocarbon and Lipid Microbiology, (ed. Timis, K. N.) 480–499 (Springer-Velarg, 2010).
Van Bogaert, I. N. A. et al. The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J. 278, 206–221 (2011).
pubmed: 21156025 doi: 10.1111/j.1742-4658.2010.07949.x
Kretschmer, M., Wang, J. & Kronstad, J. W. Peroxisomal and mitochondrial β-oxidation pathways influence the virulence of the pathogenic fungus Cryptococcus neoformans. Eukaryot. Cell 11, 1042–1054 (2012).
pubmed: 22707485 pmcid: 3416069 doi: 10.1128/EC.00128-12
Singh, S. N., Kumari, B. & Mishra, S. Microbial degradation of alkanes. In Microbial Degradation of Xenobiotics, (ed. Singh, S. N.) 439–469 (Springer-Velarg, 2012).
Ohkuma, M. et al. CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol. 4, 163–173 (1995).
doi: 10.1089/dna.1995.14.163
Craft, D. L., Madduri, K. M., Eshoo, M. & Ron-Wilson, C. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to β, ω-Dicarboxylic acids. Appl. Environ. Microbiol. 69, 5983–5991 (2003).
pubmed: 14532053 pmcid: 201205 doi: 10.1128/AEM.69.10.5983-5991.2003
Kim, D., Cryle, M. J., De Voss, J. J. & Ortiz de Montellano, P. R. Functional expression and characterization of cytochrome P450 52A21 from Candida albicans. Arch. Biochem. Biophys. 464, 213–220 (2007).
pubmed: 17400174 pmcid: 1993549 doi: 10.1016/j.abb.2007.02.032
Hirakawa, K. et al. Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J. Biol. Chem. 284, 7126–7137 (2009).
pubmed: 19131334 pmcid: 2652309 doi: 10.1074/jbc.M806864200
Moktali, V. et al. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13, 525 (2012).
pubmed: 23033934 pmcid: 3505482 doi: 10.1186/1471-2164-13-525
Iwama, R., Kobayashi, S., Ishimaru, C. & Ohta, A. Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet. Biol. 91, 43–54 (2016).
pubmed: 27039152 doi: 10.1016/j.fgb.2016.03.007
Iida, T., Sumita, T., Ohta, A. & Takagi, M. The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16, 1077–1087 (2000).
pubmed: 10953079 doi: 10.1002/1097-0061(20000915)16:12<1077::AID-YEA601>3.0.CO;2-K
Ortiz-Alvarez, J. et al. Candida pseudoglaebosa and Kodamaea ohmeri are capable of degrading alkanes in presence of heavy metals. J. Basic Microbiol. 59, 792–806 (2019).
pubmed: 31368594 doi: 10.1002/jobm.201900027
Dujon, B. Yeast evolutionary genomics. Nat. Rev.Genet. 11, 512–524 (2010).
pubmed: 20559329 doi: 10.1038/nrg2811
Mohanta, T. K. & Bae, H. The diversity of fungal genome. Biol. Proced. Online 17, 1–9 (2015).
doi: 10.1186/s12575-014-0013-3
Dujon, B. A. & Louis, E. J. Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genetics 206, 717–750 (2017).
pubmed: 28592505 pmcid: 5499181 doi: 10.1534/genetics.116.199216
Butler, G. et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662 (2009).
pubmed: 19465905 pmcid: 2834264 doi: 10.1038/nature08064
Génolevures Consortium. et al. Comparative genomics of protoploid Saccharomycetaceae. Genome Res. 19, 1696–1709 (2009).
doi: 10.1101/gr.091546.109
Loira, N., Dulermo, T., Nicaud, J. M. & Sherman, D. J. A. genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst. Biol. 6, 35 (2012).
pubmed: 22558935 pmcid: 3443063 doi: 10.1186/1752-0509-6-35
Kafri, R., Levy, M. & Pilpel, Y. The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl. Acad. Sci. 103, 11653–11658 (2006).
pubmed: 16861297 doi: 10.1073/pnas.0604883103
DeLuna, A. et al. Exposing the fitness contribution of duplicated genes. Nat. Genet. 40, 676–681 (2008).
pubmed: 18408719 doi: 10.1038/ng.123
Diss, G., Ascencio, D., Deluna, A. & Landry, C. R. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J. Exp. Zool. B. Mol. Dev. Evol. 322, 488–499 (2014).
pubmed: 24376223 doi: 10.1002/jez.b.22555
Gagnon-Arsenault, I. et al. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science 355, 630–634 (2017).
pubmed: 28183979 doi: 10.1126/science.aai7685
Pires, J. C. & Conant, G. C. Robust yet fragile: expression noise, protein misfolding, and gene dosage in the evolution of genomes. Ann. Rev. Genet. 50, 113–131 (2016).
pubmed: 27617972 doi: 10.1146/annurev-genet-120215-035400
Dujon, B. et al. Genome evolution in yeasts. Nature 430, 35–44 (2004).
pubmed: 15229592 doi: 10.1038/nature02579
Parra-Ortega, B., Cruz-Torres, H., Villa-Tanaca, L. & Hernández-Rodríguez, C. Phylogeny and evolution of the aspartyl protease family from clinically relevant Candida species. Mem. Inst. Oswaldo Cruz 104, 505–512 (2009).
pubmed: 19547880 doi: 10.1590/S0074-02762009000300018
Ames, R. M., Money, D. & Lovell, S. C. Inferring gene family histories in yeast identifies lineage specific expansions. PLoS ONE 9, e99480 (2014).
pubmed: 24921666 pmcid: 4055711 doi: 10.1371/journal.pone.0099480
Cortés-Acosta, E. et al. Polymorphism in the regulatory regions of genes CgYPS1 and CgYPS7 encoding yapsins in Candida glabrata is associated with changes in expression levels. FEMS Yeast Res. 17, fox077 (2017).
doi: 10.1093/femsyr/fox077
Cliften, P. F., Fulton, R. S., Wilson, R. K. & Johnston, M. After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172, 863–872 (2006).
pubmed: 16322519 pmcid: 1456250 doi: 10.1534/genetics.105.048900
Naseeb, S., Ames, R. M., Delneri, D. & Lovell, S. C. Rapid functional and evolutionary changes follow gene duplication in yeast. Proc. Biol. Sci. 284, 20171393 (2017).
pubmed: 28835561 pmcid: 5577496 doi: 10.1098/rspb.2017.1393
Wolfe, K. H. Origin of the Yeast Whole-Genome Duplication. PLoS Biol. 13, e1002221 (2015).
pubmed: 26252643 pmcid: 4529243 doi: 10.1371/journal.pbio.1002221
Pérez-Brito, D. et al. Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting. J. Microbiol. 53, 14–20 (2015).
pubmed: 25557477 doi: 10.1007/s12275-015-4373-4
Durrens, P. et al. Genome sequence of the yeast Clavispora lusitaniae type strain CBS 6936. Genome Announc. 5, pii: e00724-17 (2012).
Zieniuk, B. & Fabiszewska, A. Yarrowia lipolytica: a beneficious yeast in biotechnology as a rare opportunistic fungal pathogen: a minireview. World J. Microbiol. Biotechnol. 35, 10 (2019).
doi: 10.1007/s11274-018-2583-8
Hassanshahian, M., Tebyanian, H. & Cappello, S. Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar. Pollut. Bull. 64, 1386–1391 (2012).
pubmed: 22622152 doi: 10.1016/j.marpolbul.2012.04.020
Flores, M., Corral, S., Cano-García, L., Salvador, A. & Belloch, C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int. J. Food Microbiol. 212, 16–24 (2015).
pubmed: 25765533 doi: 10.1016/j.ijfoodmicro.2015.02.028
Fan, M. Y., Xie, R. J. & Qin, G. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Environ. Technol. 35, 391–399 (2014).
pubmed: 24600879 doi: 10.1080/09593330.2013.829504
Gargouri, B., Mhiri, N., Karray, F., Aloui, F. & Sayadi, S. Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. Biomed. Res. Int. 2015, 929424 (2015).
pubmed: 26339653 pmcid: 4538589 doi: 10.1155/2015/929424
Rehman, A. & Anjum, M. S. Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environ. Monit. Assess. 174, 585–595 (2011).
pubmed: 20499163 doi: 10.1007/s10661-010-1480-x
Ilyas, S. & Rehman, A. Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis. Environ. Monit. Assess. 187, 4115 (2015).
pubmed: 25384372 doi: 10.1007/s10661-014-4115-9
Zuza-Alves, D. L., Silva-Rocha, W. P. & Chaves, G. M. An update on Candida tropicalis based on basic and clinical approaches. Front. Microbiol. 8, 1927 (2017).
pubmed: 29081766 pmcid: 5645804 doi: 10.3389/fmicb.2017.01927
Martini, C., Tauk-Tornisielo, S. M., Codato, C. B., Bastos, R. G. & Ceccato-Antonini, S. R. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media. World J. Microbiol. Biotechnol. 32, 80 (2016).
pubmed: 27038950 doi: 10.1007/s11274-016-2036-1
Karimi, M. & Hassanshahian, M. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman. Braz. J. Microbiol. 47, 18–24 (2016).
pubmed: 26887222 pmcid: 4822744 doi: 10.1016/j.bjm.2015.11.032
Savini, V. et al. What do we know about Candida guilliermondii? A voyage throughout past and current literature about this emerging yeast. Mycoses 54, 434–441 (2016).
doi: 10.1111/j.1439-0507.2010.01960.x
Sánchez-Martínez, G. & Wagner, M. R. Host preference and attack pattern of Dendroctonus rhizophagus (Coleoptera: Curculionidae:Scolytinae): a bark beetle specialist on pine regeneration. Environ. Entomol. 38, 1197–1204 (2009).
pubmed: 19689900 doi: 10.1603/022.038.0429
Strom, B. L., Smith, S. L. & Brownie, C. Attractant and disruptant semiochemicals for Dendroctonus jeffreyi (Coleoptera: Curculionidae: Scolytinae). Environ. Entomol. 42, 323–332 (2013).
pubmed: 23575023 doi: 10.1603/EN12300
Kurtzman, C. P. & Fell, J. W. The yeast, A taxonomy Study (Elsevier-Science, 1997).
Lin, Z. & Li, W. H. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Mol. Biol. Evol. 28, 131–142 (2011).
pubmed: 20660490 doi: 10.1093/molbev/msq184
Berthelot, C. et al. Adaptation of proteins to the cold in Antarctic fish: a role for methionine? Genome Biol. Evol. 11, 220–231 (2019).
Libuda, D. E. & Winston, F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443, 1003–1007 (2006).
pubmed: 17066037 pmcid: 3365550 doi: 10.1038/nature05205
Meunchan, M. et al. Comprehensive analysis of a yeast lipase family in the Yarrowia clade. PLoS One 10, e0143096 (2015).
Godinho, C. P., Dias, P. J., Ponçot, E. & Sá-Correia, I. The paralogous genes PDR18and SNQ2, encoding multidrug resistance ABC transporters, derive from a recent duplication event, PDR18 being specific to the Saccharomyces genus. Front. Genet. 9,  476 (2018).
Kondrashov, F. A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. Biol. Sci. 279, 5048–5057 (2012).
pubmed: 22977152 pmcid: 3497230 doi: 10.1098/rspb.2012.1108
Mattenberger, F., Sabater-Muñoz, B., Toft, C. & Fares, M. A. The phenotypic plasticity of duplicated genes in Saccharomyces cerevisiae and the origin of adaptations. G3 (Bethesda) 7, 63–75 (2017).
doi: 10.1534/g3.116.035329
Chase, J. M. Ecological niche theory. In The theory of ecology. (eds. Scheinerand, M. & Willig, M. R.) 93–108 (University of Chicago Press, 2011).
Bak, S. et al. Cytochromes P450. Arabidopsis Book 9, e0144 (2011).
pubmed: 22303269 pmcid: 3268508 doi: 10.1199/tab.0144
Sezutsu, H., Le Goff, G. & Feyereisen, R. Origins of P450 diversity. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120428 (2013).
pubmed: 23297351 pmcid: 3538418 doi: 10.1098/rstb.2012.0428
Voordeckers, K. et al. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biology 10 (2012).
Siddiq, M. A., Hochberg, G. K. & Thornton, J. W. Evolution of protein specificity: insights from ancestral protein reconstruction. Curr. Opin. Struct. Biol. 47, 113–122 (2017).
pubmed: 28841430 pmcid: 6141201 doi: 10.1016/j.sbi.2017.07.003
Newton, M. S., Arcus, V. L., Gerth, M. L. & Patrick, W. M. Enzyme evolution: innovation is easy, optimization is complicated. Curr. Opin. Struct. Biol. 48, 110–116 (2018).
pubmed: 29207314 doi: 10.1016/j.sbi.2017.11.007
Syed, K. & Mashele, S. S. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family. PLoS One 17, e95616 (2014).
doi: 10.1371/journal.pone.0095616
Sirim, D., Widmann, M., Wagner, F. & Pleiss, J. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. BMC Struct. Biol. 10, 34 (2010).
pubmed: 20950472 pmcid: 3224734 doi: 10.1186/1472-6807-10-34
Risso, V. A. et al. Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history. Mol. Biol. Evol. 32, 440–455 (2015).
pubmed: 25392342 doi: 10.1093/molbev/msu312
Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).
pubmed: 517706 pmcid: 517706 doi: 10.1186/1471-2105-5-113
Gouy., S., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interphase for sequence alignment and phylogenetic three building. Mol. Biol. Evol. 27, 221–224 (2014).
doi: 10.1093/molbev/msp259
Darriba, D., Taboada, G. L. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Mol. Biol. Evol. 27, 1164–1165 (2011).
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 5967553 pmcid: 5967553 doi: 10.1093/molbev/msy096
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).
pubmed: 27095192 pmcid: 4987883 doi: 10.1093/nar/gkw290
Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273 (1979).
pubmed: 291943 doi: 10.1073/pnas.76.10.5269
Lockhart, S. R. et al. Development and verification of fingerprinting probes for Candida glabrata. Microbiology 143, 3733–3746 (1997).
pubmed: 9421899 doi: 10.1099/00221287-143-12-3733
Bautista-Muñoz, C., Boldo, X. M., Villa-Tanaca, L. & Hernández-Rodríguez, C. Identification of Candida spp. by randomly amplified polymorphic DNA analysis and differentiation between Candida albicans and Candida dubliniensis by direct PCR methods. J. Clin. Microbiol. 41, 414–420 (2003).
pubmed: 12517882 pmcid: 149553 doi: 10.1128/JCM.41.1.414-420.2003
Rohlf, F.J. NTSYS-pc 2.0e. Exeter Software, New York (1998).
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
pubmed: 17483113 pmcid: 17483113 doi: 10.1093/molbev/msm088
Aszodi, A., Munro, R. E. & Taylor, W. R. Distance geometry based comparative modelling. Fold. Des. 2, S3–S6 (1997).
pubmed: 9218958 doi: 10.1016/S1359-0278(97)00055-2
Webb, B. & Sali, A. Protein Structure Modelling with MODELLER. Methods Mol. Biol. 1654, 39–54 (2017).
pubmed: 28986782 doi: 10.1007/978-1-4939-7231-9_4
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 pmcid: 15264254 doi: 10.1002/jcc.20084
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thorton, J. M. PROCHECK: a program to check the stereochemical quality of protein structure. J. Appl. Cryst. 26, 283–291 (1993).
doi: 10.1107/S0021889892009944
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
pubmed: 8744570 doi: 10.1016/0263-7855(96)00018-5
Phillips, J. C., Braun, R. & Wang., W. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).
pubmed: 16222654 pmcid: 2486339 doi: 10.1002/jcc.20289
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).
pubmed: 27819658 doi: 10.1038/nmeth.4067
Morris, G. & Huey, R. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).
pubmed: 19399780 pmcid: 19399780 doi: 10.1002/jcc.21256
Campanella, J. J., Bitincka, L. & Smalley, J. MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4, 29 (2003).
pubmed: 12854978 pmcid: 166169 doi: 10.1186/1471-2105-4-29

Auteurs

Jossue Ortiz-Álvarez (J)

Laboratorio de Biología Molecular de Bacterias y Levaduras. Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Ciudad de México, México.

Arturo Becerra-Bracho (A)

Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407, Cd. Universitaria, 04510, Ciudad de México, México.

Alfonso Méndez-Tenorio (A)

Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Ciudad de México, México.

Jazmin Murcia-Garzón (J)

Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Ciudad de México, México.
Centro de Biotecnología Genómica, Instituto Politécnico Nacional. Blvd. del Maestro S/N Esq. Elías Piña. Col. Narciso Mendoza, 88710, Reynosa, Tamaulipas, México.

Lourdes Villa-Tanaca (L)

Laboratorio de Biología Molecular de Bacterias y Levaduras. Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Ciudad de México, México.

César Hernández-Rodríguez (C)

Laboratorio de Biología Molecular de Bacterias y Levaduras. Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Ciudad de México, México. chdez38@hotmail.com.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH