Functional analysis of BPSS2242 reveals its detoxification role in Burkholderia pseudomallei under salt stress.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
26 06 2020
26 06 2020
Historique:
received:
24
02
2020
accepted:
05
06
2020
entrez:
28
6
2020
pubmed:
28
6
2020
medline:
15
12
2020
Statut:
epublish
Résumé
A bpss2242 gene, encoding a putative short-chain dehydrogenase/oxidoreductase (SDR) in Burkholderia pseudomallei, was identified and its expression was up-regulated by ten-fold when B. pseudomallei was cultured under high salt concentration. Previous study suggested that BPSS2242 plays important roles in adaptation to salt stress and pathogenesis; however, its biological functions are still unknown. Herein, we report the biochemical properties and functional characterization of BPSS2242 from B. pseudomallei. BPSS2242 exhibited NADPH-dependent reductase activity toward diacetyl and methylglyoxal, toxic electrophilic dicarbonyls. The conserved catalytic triad was identified and found to play critical roles in catalysis and cofactor binding. Tyr162 and Lys166 are involved in NADPH binding and mutation of Lys166 causes a conformational change, altering protein structure. Overexpression of BPSS2242 in Escherichia coli increased bacterial survival upon exposure to diacetyl and methylglyoxal. Importantly, the viability of B. pseudomallei encountered dicarbonyl toxicity was enhanced when cultured under high salt concentration as a result of BPSS2242 overexpression. This is the first study demonstrating that BPSS2242 is responsible for detoxification of toxic metabolites, constituting a protective system against reactive carbonyl compounds in B. pseudomallei..
Identifiants
pubmed: 32591552
doi: 10.1038/s41598-020-67382-y
pii: 10.1038/s41598-020-67382-y
pmc: PMC7320009
doi:
Substances chimiques
Bacterial Proteins
0
NADP
53-59-8
Oxidoreductases
EC 1.-
Short Chain Dehydrogenase-Reductases
EC 1.1.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10453Références
Limmathurotsakul, D. et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 1, 15008 (2016).
pubmed: 27571754
pmcid: 4746747
Chewapreecha, C. et al. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat. Microbiol. 2, 16263 (2017).
pubmed: 28112723
pmcid: 5300093
Cheng, A. C. & Currie, B. J. Melioidosis: epidemiology, pathophysiology, and management. Clin. Microbiol. Rev. 18, 383–416 (2005).
pubmed: 15831829
pmcid: 1082802
Inglis, T. J. & Sagripanti, J. L. Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl. Environ. Microbiol. 72, 6865–6875 (2006).
pubmed: 16980433
pmcid: 1636198
Limmathurotsakul, D. et al. Increasing incidence of human melioidosis in Northeast Thailand. Am. J. Trop. Med. Hyg. 82, 1113–1117 (2010).
pubmed: 20519609
pmcid: 2877420
Smith, M. D., Wuthiekanun, V., Walsh, A. L. & White, N. J. Quantitative recovery of Burkholderia pseudomallei from soil in Thailand. Trans. R. Soc. Trop. Med. Hyg. 89, 488–490 (1995).
pubmed: 8560518
Vuddhakul, V. et al. Epidemiology of Burkholderia pseudomallei in Thailand. Am. J. Trop. Med. Hyg. 60, 458–461 (1999).
pubmed: 10466977
Wang-Ngarm, S., Chareonsudjai, S. & Chareonsudjai, P. Physicochemical factors affecting the growth of Burkholderia pseudomallei in soil microcosm. Am. J. Trop. Med. Hyg. 90, 480–485 (2014).
pubmed: 24445210
pmcid: 3945694
Kamjumphol, W., Chareonsudjai, P., Taweechaisupapong, S. & Chareonsudjai, S. Morphological alteration and survival of Burkholderia pseudomallei in soil microcosms. Am. J. Trop. Med. Hyg. 93, 1058–1065 (2015).
pubmed: 26324731
pmcid: 4703280
Pumirat, P. et al. Altered secretome of Burkholderia pseudomallei induced by salt stress. Biochim. Biophys. Acta. 1794, 898–904 (2009).
pubmed: 19336033
Pumirat, P. et al. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system. BMC Microbiol. 10, 171 (2010).
pubmed: 20540813
pmcid: 2896371
Oppermann, U. et al. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biol. Interact. 143–144, 247–253 (2003).
pubmed: 12604210
Kallberg, Y., Oppermann, U., Jornvall, H. & Persson, B. Short-chain dehydrogenases/reductases (SDRs). Eur. J. Biolchem. 269, 4409–4417 (2002).
Pumirat, P. et al. The role of short-chain dehydrogenase/oxidoreductase, induced by salt stress, on host interaction of B. pseudomallei. BMC Microbiol. 14, 1 (2014).
pubmed: 24382268
pmcid: 3882111
Sreerama, N. & Woody, R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252–260 (2000).
pubmed: 11112271
Alka, K., Windle, H. J., Cornally, D., Ryan, B. J. & Henehan, G. T. A short chain NAD(H)-dependent alcohol dehydrogenase (HpSCADH) from Helicobacter pylori: a role in growth under neutral and acidic conditions. Int. J. Biochem. Cell Biol. 45, 1347–1355 (2013).
pubmed: 23583739
Basner, A. & Antranikian, G. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome. PLoS ONE 9, e85844 (2014).
pubmed: 24454935
pmcid: 3891874
Nakagawa, J. et al. Molecular characterization of mammalian dicarbonyl/L-xylulose reductase and its localization in kidney. J. Biol. Chem. 277, 17883–17891 (2002).
pubmed: 11882650
Pokalsky, C., Wick, P., Harms, E., Lytle, F. E. & Van Etten, R. L. Fluorescence resolution of the intrinsic tryptophan residues of bovine protein tyrosyl phosphatase. J. Biol. Chem. 270, 3809–3815 (1995).
pubmed: 7876123
Silber, P., Chung, H., Gargiulo, P. & Schulz, H. Purification and properties of a diacetyl reductase from Escherichia coli. J. Bacteriol. 118, 919–927 (1974).
pubmed: 4151453
pmcid: 246840
Ui, S., Masuda, T., Masuda, H. & Muraki, H. Purification and properties of NADPH-linked diacetyl reductase (S-acetoin forming) from Bacillus polymyxa. Agric. Biol. Chem. 51, 1447–1448 (1987).
Giovannini, P. P., Medici, A., Bergamini, C. M. & Rippa, M. Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus. Bioorg. Med. Chem. 4, 1197–1201 (1996).
pubmed: 8879540
Vidal, I., González, J., Bernardo, A. & Martín, R. Purification and characterization of diacetyl-reducing enzymes from Staphylococcus aureus. Biochem. J. 251, 461–466 (1988).
pubmed: 3041963
pmcid: 1149025
Carballo, J., Martin, R., Bernardo, A. & Gonzalez, J. Purification, characterization and some properties of diacetyl (acetoin) reductase from Enterobacter aerogenes. Eur. J. Biolchem. 198, 327–332 (1991).
Rattray, F. P., Walfridsson, M. & Nilsson, D. Purification and characterization of a diacetyl reductase from Leuconostoc pseudomesenteroides. Int. Dairy J. 10, 781–789 (2000).
Wang, Z. et al. Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl. Microbiol. Biotechnol. 98, 641–650 (2014).
pubmed: 23568047
Zhao, X. et al. Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from Corynebacterium crenatum SYPA5-5. Lett. Appl. Microbiol. 61, 573–579 (2015).
pubmed: 26393961
Xu, G. C., Bian, Y. Q., Han, R. Z., Dong, J. J. & Ni, Y. Cloning, expression, and characterization of budC gene encoding meso-2,3-butanediol dehydrogenase from Bacillus licheniformis. Appl. Biochem. Biotechnol. 178, 604–617 (2016).
pubmed: 26494135
Muschallik, L. et al. (R, R)-Butane-2,3-diol dehydrogenase from Bacillus clausii DSM 8716(T): cloning and expression of the bdhA-gene, and initial characterization of enzyme. J. Biotechnol. 258, 41–50 (2017).
pubmed: 28793235
Filling, C. et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J. Biol. Chem. 277, 25677–25684 (2002).
pubmed: 11976334
Chang, Y. H., Chuang, L. Y. & Hwang, C. C. Mechanism of proton transfer in the 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. J. Biol. Chem. 282, 34306–34314 (2007).
pubmed: 17893142
Lee, C. & Park, C. Bacterial responses to glyoxal and methylglyoxal: reactive electrophilic species. Int. J. Mol. Sci. 18, 169 (2017).
pmcid: 5297802
Anders, M. W. Diacetyl and related flavorant alpha-Diketones: Biotransformation, cellular interactions, and respiratory-tract toxicity. Toxicology 388, 21–29 (2017).
pubmed: 28179188
Sonnhammer, E. L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182 (1998).
pubmed: 9783223
Seng, R. et al. Prevalence and genetic diversity of Burkholderia pseudomallei isolates in the environment near a patient’s residence in Northeast Thailand. PLoS Negl. Trop. Dis. 13, e0007348 (2019).
pubmed: 31002718
pmcid: 6493765
Holden, M. T. et al. Genomic plasticity of the causative agent of melioidosis Burkholderia pseudomallei . Proc. Natl. Acad. Sci. U.S.A. 101, 14240–14245 (2004).
pubmed: 15377794
pmcid: 521101
Tuanyok, A. et al. Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics. 9, 566–566 (2008).
pubmed: 19038032
pmcid: 2612704
Persson, B., Kallberg, Y., Oppermann, U. & Jornvall, H. Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem. Biol. Interact. 143–144, 271–278 (2003).
pubmed: 12604213
Bray, J. E., Marsden, B. D. & Oppermann, U. The human short-chain dehydrogenase/reductase (SDR) superfamily: a bioinformatics summary. Chem. Biol. Interact. 178, 99–109 (2009).
pubmed: 19061874
Jay, J. M., Rivers, G. M. & Boisvert, W. E. Antimicrobial Properties of alpha-Dicarbonyl and Related Compounds. J. Food. Prot. 46, 325–329 (1983).
pubmed: 30913596
Jay, J. M. Antimicrobial properties of diacetyl. Appl. Environ. Microbiol. 44, 525–532 (1982).
pubmed: 7137998
pmcid: 242052
Freedberg, W. B., Kistler, W. S. & Lin, E. C. Lethal synthesis of methylglyoxal by Escherichia coli during unregulated glycerol metabolism. J. Bacteriol. 108, 137–144 (1971).
pubmed: 4941552
pmcid: 247042
Hopper, D. J. & Cooper, R. A. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis?. FEBS Lett. 13, 213–216 (1971).
pubmed: 11945670
Kadner, R. J., Murphy, G. P. & Stephens, C. M. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J. Gen. Microbiol. 138, 2007–2014 (1992).
pubmed: 1479338
Ferguson, G. P., Totemeyer, S., MacLean, M. J. & Booth, I. R. Methylglyoxal production in bacteria: suicide or survival?. Arch. Microbiol. 170, 209–218 (1998).
pubmed: 9732434
Langa, S. et al. Short communication: Combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens. J. Dairy Sci. 97, 6116–6121 (2014).
pubmed: 25087026
Lee, C., Kim, I. & Park, C. Glyoxal detoxification in Escherichia coli K-12 by NADPH dependent aldo-keto reductases. J. Microbiol. 51, 527–530 (2013).
pubmed: 23990306
Xu, D., Liu, X., Guo, C. & Zhao, J. Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp. PCC 7002. Microbiology (Reading, Engl) 152, 2013–2021 (2006).
Yamauchi, Y., Hasegawa, A., Taninaka, A., Mizutani, M. & Sugimoto, Y. NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants. J. Biol. Chem. 286, 6999–7009 (2011).
pubmed: 21169366
Perez, J. M., Arenas, F. A., Pradenas, G. A., Sandoval, J. M. & Vasquez, C. C. Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J. Biol. Chem. 283, 7346–7353 (2008).
pubmed: 18211903
Rabie, E., Serem, J. C., Oberholzer, H. M., Gaspar, A. R. & Bester, M. J. How methylglyoxal kills bacteria: an ultrastructural study. Ultrastruct. Pathol. 40, 107–111 (2016).
pubmed: 26986806
Grant, A. W., Steel, G., Waugh, H. & Ellis, E. M. A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiol Lett 218, 93–99 (2003).
pubmed: 12583903
Zhang, M. M., Ong, C. L., Walker, M. J. & McEwan, A. G. Defence against methylglyoxal in Group A Streptococcus: a role for Glyoxylase I in bacterial virulence and survival in neutrophils?. Pathog Dis. 122, 74 (2016).
Pumirat, P. et al. Effects of sodium chloride on heat resistance, oxidative susceptibility, motility, biofilm and plaque formation of Burkholderia pseudomallei. MicrobiologyOpen 493, 6 (2017).