Determination of binding constants for strong complexation by affinity capillary electrophoresis: the example of complexes of ester betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin.

Betulin derivatives Electromigration dispersion Haarhoff-Van der Linde function High-affinity interaction Inclusion complexes Stability constants

Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Sep 2020
Historique:
received: 18 05 2020
accepted: 17 06 2020
revised: 12 06 2020
pubmed: 4 7 2020
medline: 24 4 2021
entrez: 4 7 2020
Statut: ppublish

Résumé

Complexation plays an important role in many biological phenomena, the analysis of different samples, optimization of separation processes, and increasing the pharmacological activity of drugs. This paper discusses the features of using mobility shift affinity capillary electrophoresis for studying strong complexation. Electrophoretic peaks for this case are often triangular. It was shown that the use of electrophoretic mobility obtained from the peak apex time to calculate binding constants leads to significant systematic and random errors, and the parameter a

Identifiants

pubmed: 32617760
doi: 10.1007/s00216-020-02777-4
pii: 10.1007/s00216-020-02777-4
doi:

Substances chimiques

Esters 0
Triterpenes 0
gamma-Cyclodextrins 0
betulin 6W70HN7X7O
(2-hydroxypropyl)-gamma-cyclodextrin P6BYU725IU

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5615-5625

Subventions

Organisme : Russian Academy of Sciences
ID : АААА-А17-117021310221-7

Références

Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114:10940–75.
Jacob S, Nair AB. Cyclodextrin complexes: perspective from drug delivery and formulation. Drug Dev Res. 2018;79:201–17.
pubmed: 30188584
Mura P. Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J Pharm Biomed Anal. 2014;101:238–50.
pubmed: 24680374
Olabi M, Stein M, Wätzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods. 2018;146:76–92.
pubmed: 29753786
Dubský P, Dvořák M, Ansorge M. Affinity capillary electrophoresis: the theory of electromigration. Anal Bioanal Chem. 2016;408:8623–41.
pubmed: 27558099
Musile G, Cenci L, Andreetto E, Ambrosi E, Tagliaro F, Bossi AM. Screening of the binding properties of molecularly imprinted nanoparticles via capillary electrophoresis. Anal Bioanal Chem. 2016;408:3435–43.
pubmed: 26960903
Popova OV, Sursyakova VV, Burmakina GV, Levdansky VA, Rubaylo AI. Determination of stability constants of inclusion complexes of betulin derivatives with β-cyclodextrin by capillary electrophoresis. Dokl Chem. 2015;461:67–9.
Sursyakova VV, Levdansky VA, Rubaylo AI. Thermodynamic parameters for the complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-β-cyclodextrin determined by affinity capillary electrophoresis. J Mol Liq. 2019;283:325–31.
Sursyakova VV, Levdansky VA, Rubaylo AI. Strong complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin studied by affinity capillary electrophoresis. Electrophoresis. 2020;41:112–5.
pubmed: 31670400
Stein M, Haselberg R, Mozafari-Torshizi M, Wätzig H. Experimental design and measurement uncertainty in ligand binding studies by affinity capillary electrophoresis. Electrophoresis. 2019;40:1041–54.
pubmed: 30637796
Pangavhane S, Makrlík E, Ruzza P, Kašička V. Affinity capillary electrophoresis employed for determination of stability constants of antamanide complexes with univalent and divalent cations in methanol. Electrophoresis. 2019;40:2321–8.
pubmed: 31054235
Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis. 2019;40:625–42.
pubmed: 30600537
Neaga IO, Hambye S, Bodoki E, Palmieri C, Ansseau E, Belayew A, et al. Affinity capillary electrophoresis for identification of active drug candidates in myotonic dystrophy type 1. Anal Bioanal Chem. 2018;410:4495–507.
pubmed: 29736701
Neaga IO, Hambye S, Bodoki E, Palmieri C, Eynde JJV, Ansseau E, et al. Correction to: Affinity capillary electrophoresis for identification of active drug candidates in myotonic dystrophy type 1. Anal Bioanal Chem. 2019;411:545.
pubmed: 30443771
Ansorge M, Dubský P, Ušelová K. Into the theory of the partial-filling affinity capillary electrophoresis and the determination of apparent stability constants of analyte-ligand complexes. Electrophoresis. 2018;39:742–51.
pubmed: 29193171
Konášová R, Koval D, Jaklová Dytrtová J, Kašička V. Comparison of two low flow interfaces for measurement of mobilities and stability constants by affinity capillary electrophoresis–mass spectrometry. J Chromatogr A. 2018;1568:197–204.
pubmed: 30033170
Aizpurua-Olaizola O, Torano JS, Pukin A, Fu O, Boons GJ, de Jong GJ, et al. Affinity capillary electrophoresis for the assessment of binding affinity of carbohydrate-based cholera toxin inhibitors. Electrophoresis. 2018;39:344–7.
pubmed: 28905402
Kanizsová L, Ansorge M, Zusková I, Dubský P. Using single-isomer octa(6-O-sulfo)-γ-cyclodextrin for fast capillary zone electrophoretic enantioseparation of pindolol: determination of complexation constants, software-assisted optimization, and method validation. J Chromatogr A. 2018;1568:214–21.
Mofaddel N, Fourmentin S, Guillen F, Landy D, Gouhier G. Ionic liquids and cyclodextrin inclusion complexes: limitation of the affinity capillary electrophoresis technique. Anal Bioanal Chem. 2016;408:8211–20.
pubmed: 27709240
Holm R, Hartvig RA, Nicolajsen HV, Westh P, Østergaard J. Characterization of the complexation of tauro and glyco-conjugated bile salts with γ-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin using affinity capillary electrophoresis. J Incl Phenom Macrocycl Chem. 2008;61:161–9.
Sursyakova VV, Rubaylo AI. Stability constants of adducts of succinate copper(II) complexes with β-cyclodextrin determined by capillary electrophoresis. Electrophoresis. 2018;39:1079–85.
pubmed: 29412470
Pangavhane S, Böhm S, Makrlík E, Ruzza P, Kašička V. Affinity capillary electrophoresis and quantum mechanical calculations applied to investigation of [Gly
pubmed: 28106251
Sursyakova VV, Burmakina GV, Rubaylo AI. Composition and stability constants of copper(II) complexes with succinic acid determined by capillary electrophoresis. J Coord Chem. 2017;70:431–40.
Tůmová T, Monincová L, Čeřovský V, Kašička V. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis. Electrophoresis. 2016;37:3186–95.
pubmed: 27757974
Sursyakova VV, Burmakina GV, Rubaylo AI. Influence of analyte concentration on stability constant values determined by capillary electrophoresis. J Chromatogr Sci. 2016;54:1253–62.
pubmed: 27090731
Sladkov V. Affinity capillary electrophoresis in studying the complex formation equilibria of radionuclides in aqueous solutions. Electrophoresis. 2016;37:2558–66.
pubmed: 27196717
Ehala S, Kašička V, Makrlík E. Determination of stability constants of valinomycin complexes with ammonium and alkali metal ions by capillary affinity electrophoresis. Electrophoresis. 2008;29:652–7.
pubmed: 18200647
Jiang C, Armstrong DW. Use of CE for the determination of binding constants. Electrophoresis. 2010;31:17–27.
pubmed: 20039286
Dubský P, Ördögová M, Malý M, Riesová M. CEval: all-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. J Chromatogr A. 2016;1445:158–65.
pubmed: 27062723
Šlampová A, Malá Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016–2018). Electrophoresis. 2019;40:40–54.
pubmed: 30073675
Vespalec R, Boček P. Calculation of stability constants for the chiral selector–enantiomer interactions from electrophoretic mobilities. J Chromatogr A. 2000;875:431–45.
pubmed: 10839163
Hruška V, Svobodová J, Beneš M, Gaš B. A nonlinear electrophoretic model for PeakMaster: part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory. J Chromatogr A. 2012;1267:102–8.
pubmed: 22818776
Svobodová J, Beneš M, Hruška V, Ušelová K, Gaš B. Simulation of the effects of complex-formation equilibria in electrophoresis: II. Experimental verification. Electrophoresis. 2012;33:948–57.
pubmed: 22528415
Beneš M, Svobodová J, Hruška V, Dvořák M, Zusková I, Gaš B. A nonlinear electrophoretic model for PeakMaster: part IV. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Experimental verification. J Chromatogr A. 2012;1267:109–15.
pubmed: 22789753
Galbusera C, Thachuk M, De Lorenzi E, Chen DDY. Affinity capillary electrophoresis using a low-concentration additive with the consideration of relative mobilities. Anal Chem. 2002;74:1903–14.
pubmed: 11985325
Le Saux T, Varenne A, Gareil P. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis. Electrophoresis. 2005;26:3094–104.
pubmed: 16041707
Dubský P, Dvořák M, Műllerová L, Gaš B. Determination of the correct migration time and other parameters of the Haarhoff–van der Linde function from the peak geometry characteristics. Electrophoresis. 2015;36:655–61.
pubmed: 25475400
Erny GL, Bergström ET, Goodall DM. Electromigration dispersion in capillary zone electrophoresis. Experimental validation of use of the Haarhoff–Van der Linde function. J Chromatogr A. 2002;959:229–39.
pubmed: 12141548
Erny GL, Bergström ET, Goodall DM. Predicting peak shape in capillary zone electrophoresis: a generic approach to parametrizing peaks using the Haarhoff-Van der Linde (HVL) function. Anal Chem. 2001;73:4862–72.
pubmed: 11681462
Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875–917.
pubmed: 11848952
Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev. 1997;97:1325–58.
pubmed: 11851454
Holm R, Nicolajsen HV, Hartvig RA, Westh P, Østergaard J. Complexation of tauro- and glyco-conjugated bile salts with three neutral β-CDs studied by ACE. Electrophoresis. 2007;28:3745–52.
pubmed: 17893938
François Y, Varenne A, Sirieix-Plenet J, Gareil P. Determination of aqueous inclusion complexation constants and stoichiometry of alkyl(methyl)-methylimidazolium-based ionic liquid cations and neutral cyclodextrins by affinity capillary electrophoresis. J Sep Sci. 2007;30:751–60.
pubmed: 17461117
Le Saux T, Varenne A, Perreau F, Siret L, Duteil S, Duhau L, et al. Determination of the binding parameters for antithrombin–heparin fragment systems by affinity and frontal analysis continuous capillary electrophoresis. J Chromatogr A. 2006;1132:289–96.
pubmed: 16965780
Tolstikova TG, Sorokina IV, Tolstikov GA, Tolstikov AG, Flekhter OB. Biological activity and pharmacological prospects of lupane terpenoids: I. natural lupane derivatives. Rus J Bioorg Chem. 2006;32:37–49.
Popova OV, Sursyakova VV, Burmakina GV, Maksimov NG, Levdansky VA, Rubaylo AI. Solubility study of betulonic acid in the presence of hydroxypropyl-γ-cyclodextrin by capillary electrophoresis. J Sib Fed Univ Chem. 2016;9:171–6.
Sursyakova VV, Maksimov NG, Levdansky VA, Rubaylo AI. Combination of phase-solubility method and capillary zone electrophoresis to determine binding constants of cyclodextrins with practically water-insoluble compounds. J Pharm Biomed Anal. 2018;160:12–8.
pubmed: 30055342
Sursyakova VV, Levdansky VA, Rubaylo AI. Thermodynamic parameters for the complexation of water-insoluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin determined by phase-solubility technique combined with capillary zone electrophoresis. Electrophoresis. 2019;40:1656–61.
pubmed: 30957904
Levdanskii VA, Levdanskii AV, Kuznetsov BN. Synthesis of betulin dibenzoate and diphthalate. Chem Nat Compound. 2017;53:310–1.
Levdanskij VA, Levdanskij AV, Kuznetsov BN. Method for producing betulinol diphtalate. Russ Patent. № RU  2614149 C1. 23.03.2017.
Levdanskij VA, Levdanskij AV, Kuznetsov BN. Method of producing betulinol disuccinate. Russ Patent. № RU 2638160 C1. 12.12.2017.

Auteurs

Viktoria V Sursyakova (VV)

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/24, Krasnoyarsk, Russia, 660036. viktoria_vs@list.ru.

Vladimir A Levdansky (VA)

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/24, Krasnoyarsk, Russia, 660036.

Anatoly I Rubaylo (AI)

Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/24, Krasnoyarsk, Russia, 660036.
Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, Russia, 660041.
Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50, Krasnoyarsk, Russia, 660036.

Articles similaires

Perylene Dopamine Electrochemical Techniques Imides Luminescent Measurements
Colorimetry Captopril Humans Alloys Limit of Detection

Low-cost portable sensor for rapid and sensitive detection of Pb

Niloufar Amin, Jiangang Chen, Qing Cao et al.
1.00
Lead Electric Capacitance Limit of Detection Electrodes Electrochemical Techniques
Aluminum Carbon Quantum Dots Spectrometry, Fluorescence Limit of Detection

Classifications MeSH