Cell-Free Protein Synthesis of Small Intrinsically Disordered Proteins for NMR Spectroscopy.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2020
Historique:
entrez: 23 7 2020
pubmed: 23 7 2020
medline: 11 3 2021
Statut: ppublish

Résumé

Cell-free protein synthesis (CFPS) is an established method to produce recombinant proteins and has been used in a wide variety of applications. The use of CFPS has almost from the onset been favorably linked to the production of isotopically labelled proteins for NMR spectroscopy as the resulting labelling of the produced protein is defined by the chosen amino acids during reaction setup. Here we describe how to set up production and isotopic labelling of small intrinsically disordered proteins (IDPs) for NMR spectroscopy applications using an E. coli-based CFPS system in batch mode.

Identifiants

pubmed: 32696360
doi: 10.1007/978-1-0716-0524-0_11
doi:

Substances chimiques

Intrinsically Disordered Proteins 0
Magnesium I38ZP9992A

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

233-245

Références

Matthies D, Haberstock S, Joos F et al (2011) Cell-free expression and assembly of ATP synthase. J Mol Biol 413(3):593–603. https://doi.org/10.1016/j.jmb.2011.08.055
doi: 10.1016/j.jmb.2011.08.055 pubmed: 21925509
Isaksson L, Enberg J, Neutze R et al (2012) Expression screening of membrane proteins with cell-free protein synthesis. Protein Expr Purif 82(1):218–225. https://doi.org/10.1016/j.pep.2012.01.003
doi: 10.1016/j.pep.2012.01.003 pubmed: 22270086
Kainosho M, Torizawa T, Iwashita Y et al (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440(7080):52–57. https://doi.org/10.1038/nature04525
doi: 10.1038/nature04525 pubmed: 16511487
Peuker S, Andersson H, Gustavsson E et al (2016) Efficient isotope editing of proteins for site-directed vibrational spectroscopy. J Am Chem Soc 138(7):2312–2318. https://doi.org/10.1021/jacs.5b12680
doi: 10.1021/jacs.5b12680 pubmed: 26796542
Zawada JF, Yin G, Steiner AR et al (2011) Microscale to manufacturing scale-up of cell-free cytokine production--a new approach for shortening protein production development timelines. Biotechnol Bioeng 108(7):1570–1578. https://doi.org/10.1002/bit.23103
doi: 10.1002/bit.23103 pubmed: 21337337 pmcid: 3128707
Huang A, Nguyen PQ, Stark JC et al (2018) BioBits explorer: a modular synthetic biology education kit. Sci Adv 4(8):eaat5105. https://doi.org/10.1126/sciadv.aat5105
doi: 10.1126/sciadv.aat5105 pubmed: 30083608 pmcid: 6070312
Kurotani A, Takagi T, Toyama M et al (2010) Comprehensive bioinformatics analysis of cell-free protein synthesis: identification of multiple protein properties that correlate with successful expression. FASEB J 24(4):1095–1104. https://doi.org/10.1096/fj.09-139527
doi: 10.1096/fj.09-139527 pubmed: 19940260
Tokmakov AA, Kurotani A, Ikeda M et al (2015) Content of intrinsic disorder influences the outcome of cell-free protein synthesis. Sci Rep 5:14079. https://doi.org/10.1038/srep14079
doi: 10.1038/srep14079 pubmed: 26359642 pmcid: 4566126
Adachi J, Katsura K, Seki E et al (2019) Cell-free protein synthesis using S30 extracts from Escherichia coli RFzero strains for efficient incorporation of non-natural amino acids into proteins. Int J Mol Sci 20(3):E492. https://doi.org/10.3390/ijms20030492
doi: 10.3390/ijms20030492 pubmed: 30678326
Albayrak C, Swartz JR (2013) Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation. Nucleic Acids Res 41(11):5949–5963. https://doi.org/10.1093/nar/gkt226
doi: 10.1093/nar/gkt226 pubmed: 23589624 pmcid: 3675464
Roge J, Betton JM (2005) Use of pIVEX plasmids for protein overproduction in Escherichia coli. Microb Cell Factories 4:18. https://doi.org/10.1186/1475-2859-4-18
doi: 10.1186/1475-2859-4-18
Davanloo P, Rosenberg AH, Dunn JJ et al (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 81(7):2035–2039. https://doi.org/10.1073/pnas.81.7.2035
doi: 10.1073/pnas.81.7.2035 pubmed: 6371808 pmcid: 345431
van den Berg S, Löfdahl P-A, Härd T et al (2006) Improved solubility of TEV protease by directed evolution. J Biotechnol 121(3):291–298. https://doi.org/10.1016/j.jbiotec.2005.08.006
doi: 10.1016/j.jbiotec.2005.08.006 pubmed: 16150509
Kim TW, Keum JW, Oh IS et al (2006) Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J Biotechnol 126(4):554–561. https://doi.org/10.1016/j.jbiotec.2006.05.014
doi: 10.1016/j.jbiotec.2006.05.014 pubmed: 16797767
Pedersen A, Hellberg K, Enberg J et al (2011) Rational improvement of cell-free protein synthesis. New Biotechnol 28(3):218–224. https://doi.org/10.1016/j.nbt.2010.06.015
doi: 10.1016/j.nbt.2010.06.015

Auteurs

Linnéa Isaksson (L)

Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.

Anders Pedersen (A)

Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden. anders.pedersen@nmr.gu.se.

Articles similaires

Psoriasis Humans Magnesium Zinc Trace Elements
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Protoporphyrins Photochemotherapy Humans Aminolevulinic Acid Chlorophyllides

Classifications MeSH