PIF4 and HOOKLESS1 Impinge on Common Transcriptome and Isoform Regulation in Thermomorphogenesis.


Journal

Plant communications
ISSN: 2590-3462
Titre abrégé: Plant Commun
Pays: China
ID NLM: 101769147

Informations de publication

Date de publication:
09 03 2020
Historique:
received: 16 09 2019
revised: 12 10 2019
accepted: 14 02 2020
entrez: 28 12 2020
pubmed: 29 12 2020
medline: 29 12 2020
Statut: epublish

Résumé

High temperature activates the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4) to stimulate auxin signaling, which causes hypocotyl elongation and leaf hyponasty (thermomorphogenesis). HOOKLESS1 (HLS1) is a recently reported positive regulator of thermomorphogenesis, but the molecular mechanisms by which HLS1 regulates thermomorphogenesis remain unknown. In this study, we initially compared PIF4- and/or HLS1-dependent differential gene expression (DEG) upon high-temperature treatment. We found that a large number of genes are coregulated by PIF4 and HLS1, especially genes involved in plant growth or defense responses. Moreover, we found that HLS1 interacts with PIF4 to form a regulatory module and that, among the HLS1-PIF4-coregulated genes, 27.7% are direct targets of PIF4. We also identified 870 differentially alternatively spliced genes (DASGs) in wild-type plants under high temperature. Interestingly, more than half of these DASG events (52.4%) are dependent on both HLS1 and PIF4, and the spliceosome-defective mutant plantsexhibit a hyposensitive response to high temperature, indicating that DASGs are required for thermomorphogenesis. Further comparative analyses showed that the HLS1/PIF4-coregulated DEGs and DASGs exhibit almost no overlap, suggesting that high temperature triggers two distinct strategies to control plant responses and thermomorphogenesis. Taken together, these results demonstrate that the HLS1-PIF4 module precisely controls both transcriptional and posttranscriptional regulation during plant thermomorphogenesis.

Identifiants

pubmed: 33367235
doi: 10.1016/j.xplc.2020.100034
pii: S2590-3462(20)30015-8
pmc: PMC7748007
doi:

Substances chimiques

Arabidopsis Proteins 0
Basic Helix-Loop-Helix Transcription Factors 0
PIF4 protein, Arabidopsis 0
hookless1 protein, Arabidopsis 0
Mixed Function Oxygenases EC 1.-
YUCCA8 protein, Arabidopsis EC 1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Pagination

100034

Informations de copyright

© 2020 The Author(s).

Références

Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):224-9
pubmed: 26699514
Mol Plant. 2015 Jul;8(7):1038-52
pubmed: 25617718
Nature. 2012 Mar 21;484(7393):242-245
pubmed: 22437497
Genome Biol. 2004;5(12):R102
pubmed: 15575968
Nat Plants. 2016 Jan 06;2:15190
pubmed: 27250752
Science. 2013 Nov 1;342(6158):628-32
pubmed: 24030492
Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65
pubmed: 23385723
Curr Biol. 2017 Jan 23;27(2):243-249
pubmed: 28041792
Mol Plant. 2018 Jul 2;11(7):928-942
pubmed: 29729397
Plant Cell. 1990 Jun;2(6):513-23
pubmed: 2152173
J Vis Exp. 2017 Nov 20;(129):
pubmed: 29286385
Science. 2018 Nov 23;362(6417):904
pubmed: 30467163
Cell. 1996 Apr 19;85(2):183-94
pubmed: 8612271
J Biol Chem. 2018 Jun 29;293(26):10235-10244
pubmed: 29773655
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7197-202
pubmed: 9618562
Plant Cell. 2012 Aug;24(8):3278-95
pubmed: 22942380
Sci China Life Sci. 2019 Mar;62(3):423-425
pubmed: 30547348
Plant Cell. 2014 Mar;26(3):1105-17
pubmed: 24668749
Curr Biol. 2018 Apr 23;28(8):1273-1280.e3
pubmed: 29628371
PLoS Genet. 2018 Mar 16;14(3):e1007280
pubmed: 29547672
Curr Biol. 2012 May 22;22(10):R396-7
pubmed: 22625853
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18781-6
pubmed: 25512548
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5
pubmed: 22123947
Dev Cell. 2019 Oct 7;51(1):78-88.e3
pubmed: 31495692
PLoS Genet. 2012;8(3):e1002594
pubmed: 22479194
Nature. 2013 Nov 21;503(7476):414-7
pubmed: 24067612
F1000Res. 2013 Sep 16;2:188
pubmed: 24555089
Methods Mol Biol. 2013;1038:171-9
pubmed: 23872975
Curr Biol. 2009 Mar 10;19(5):408-13
pubmed: 19249207
Science. 2016 Nov 18;354(6314):886-889
pubmed: 27789797
Plant Cell. 2016 Jul;28(7):1662-81
pubmed: 27317674
Science. 2016 Nov 18;354(6314):897-900
pubmed: 27789798
Dev Cell. 2004 Aug;7(2):193-204
pubmed: 15296716
Plant Cell Physiol. 2006 Dec;47(12):1603-11
pubmed: 17071622
Plant Cell Environ. 2018 Jul;41(7):1539-1550
pubmed: 29532482
Development. 2010 Feb;137(4):597-606
pubmed: 20110325
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601
pubmed: 25480548
Cell Res. 2012 May;22(5):915-27
pubmed: 22349459
Plant Physiol. 2019 Aug;180(4):1793-1802
pubmed: 31113832
Nat Cell Biol. 2012 Aug;14(8):802-9
pubmed: 22820378
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70
pubmed: 20435677

Auteurs

Huanhuan Jin (H)

Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.

Jingya Lin (J)

Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.

Ziqiang Zhu (Z)

Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis

Classifications MeSH