Computer-Aided Planning for the Verification of Large Batches of DNA Constructs.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 6 1 2021
pubmed: 7 1 2021
medline: 30 3 2021
Statut: ppublish

Résumé

Restriction digest analysis and Sanger sequencing are among the most commonly used techniques to check the sequence of synthetic DNA constructs. However, both require careful preparation to select restriction enzymes or DNA primers adapted to the expected constructs sequences. In projects involving manufacturing of large batches of synthetic constructs, the task can be tedious and error-prone. This chapter demonstrates the use of two free and open-source web applications providing fast and automated selection of enzymes and sequencing primers for DNA construct verification.

Identifiants

pubmed: 33405221
doi: 10.1007/978-1-0716-1032-9_7
doi:

Substances chimiques

DNA 9007-49-2
DNA Restriction Enzymes EC 3.1.21.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

167-174

Références

Casini A, Storch M, Baldwin GS, Ellis T (2015) Bricks and blueprints: methods and standards for DNA assembly. Nat Rev Mol Cell Biol 16(9):568–576. https://doi.org/10.1038/nrm4014
doi: 10.1038/nrm4014 pubmed: 26081612
Potapov V, Ong JL, Kucera RB, Langhorst BW, Bilotti K, Pryor JM et al (2018) Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synth Biol 7(11):2665–2674. https://doi.org/10.1021/acssynbio.8b00333
doi: 10.1021/acssynbio.8b00333 pubmed: 30335370
Shapland EB, Holmes V, Reeves CD, Sorokin E, Durot M, Platt D et al (2015) Low-cost, high-throughput sequencing of DNA assemblies using a highly multiplexed Nextera process. ACS Synth Biol 4(7):860–866. https://doi.org/10.1021/sb500362n
doi: 10.1021/sb500362n pubmed: 25913499
Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448. https://doi.org/10.1016/0022-2836(75)90213-2
doi: 10.1016/0022-2836(75)90213-2 pubmed: 1100841
Dharmadi Y, Patel K, Shapland E, Hollis D, Slaby T, Klinkner N et al (2014) High-throughput, cost-effective verification of structural DNA assembly. Nucleic Acids Res 42(4):e22. https://doi.org/10.1093/nar/gkt1088
doi: 10.1093/nar/gkt1088 pubmed: 24203706
Hancock JM, Zvelebil MJ, Hancock JM (2004). PRIMER3. In: Dictionary of bioinformatics and computational biology. https://doi.org/10.1002/9780471650126.dob0560.pub2

Auteurs

Valentin Zulkower (V)

Edinburgh Genome Foundry, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, UK. valentin.zulkower@gmail.com.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Classifications MeSH