Tight association of genome rearrangements with gene expression in conifer plastomes.


Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
08 Jan 2021
Historique:
received: 09 10 2020
accepted: 20 12 2020
entrez: 9 1 2021
pubmed: 10 1 2021
medline: 4 5 2021
Statut: epublish

Résumé

Our understanding of plastid transcriptomes is limited to a few model plants whose plastid genomes (plastomes) have a highly conserved gene order. Consequently, little is known about how gene expression changes in response to genomic rearrangements in plastids. This is particularly important in the highly rearranged conifer plastomes. We sequenced and reported the plastomes and plastid transcriptomes of six conifer species, representing all six extant families. Strand-specific RNAseq data show a nearly full transcription of both plastomic strands and detect C-to-U RNA-editing sites at both sense and antisense transcripts. We demonstrate that the expression of plastid coding genes is strongly functionally dependent among conifer species. However, the strength of this association declines as the number of plastomic rearrangements increases. This finding indicates that plastomic rearrangement influences gene expression. Our data provide the first line of evidence that plastomic rearrangements not only complicate the plastomic architecture but also drive the dynamics of plastid transcriptomes in conifers.

Sections du résumé

BACKGROUND BACKGROUND
Our understanding of plastid transcriptomes is limited to a few model plants whose plastid genomes (plastomes) have a highly conserved gene order. Consequently, little is known about how gene expression changes in response to genomic rearrangements in plastids. This is particularly important in the highly rearranged conifer plastomes.
RESULTS RESULTS
We sequenced and reported the plastomes and plastid transcriptomes of six conifer species, representing all six extant families. Strand-specific RNAseq data show a nearly full transcription of both plastomic strands and detect C-to-U RNA-editing sites at both sense and antisense transcripts. We demonstrate that the expression of plastid coding genes is strongly functionally dependent among conifer species. However, the strength of this association declines as the number of plastomic rearrangements increases. This finding indicates that plastomic rearrangement influences gene expression.
CONCLUSIONS CONCLUSIONS
Our data provide the first line of evidence that plastomic rearrangements not only complicate the plastomic architecture but also drive the dynamics of plastid transcriptomes in conifers.

Identifiants

pubmed: 33419387
doi: 10.1186/s12870-020-02809-2
pii: 10.1186/s12870-020-02809-2
pmc: PMC7796615
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

33

Subventions

Organisme : Ministry of Science and Technology, Taiwan
ID : MOST 106-2311-B-001-005

Références

Mofikoya OO, Mäkinen M, Jänis J. Chemical fingerprinting of conifer needle essential oils and solvent extracts by ultrahigh-resolution fourier transform ion cyclotron resonance mass spectrometry. ACS Omega. 2020;5:10543–52. https://doi.org/10.1021/acsomega.0c00901 .
doi: 10.1021/acsomega.0c00901 pubmed: 32426612 pmcid: 7227056
Pfannschmidt T, Blanvillain R, Merendino L, Courtois F, Chevalier F, Liebers M, et al. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J Exp Bot. 2015;66:6957–73. https://doi.org/10.1093/jxb/erv415 .
doi: 10.1093/jxb/erv415 pubmed: 26355147
del Campo EM. Post-transcriptional control of chloroplast gene expression. Gene Regul Syst Bio. 2009;3:31–47. https://doi.org/10.1104/pp.125.1.142 .
doi: 10.1104/pp.125.1.142 pubmed: 19838333 pmcid: 2758277
Hotto AM, Schmitz RJ, Fei Z, Ecker JR, Stern DB. Unexpected diversity of chloroplast noncoding RNAs as revealed by deep sequencing of the Arabidopsis transcriptome. G3. 2011;1:559–70. https://doi.org/10.1534/g3.111.000752 .
doi: 10.1534/g3.111.000752 pubmed: 22384367
Zhelyazkova P, Sharma CM, Förstner KU, Liere K, Vogel J, Börner T. The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell. 2012;24:123–36. https://doi.org/10.1105/tpc.111.089441 .
doi: 10.1105/tpc.111.089441 pubmed: 22267485 pmcid: 3289561
Castandet B, Germain A, Hotto AM, Stern DB. Systematic sequencing of chloroplast transcript termini from Arabidopsis thaliana reveals >200 transcription initiation sites and the extensive imprints of RNA-binding proteins and secondary structures. Nucleic Acids Res. 2019;47:11889–905. https://doi.org/10.1093/nar/gkz1059 .
doi: 10.1093/nar/gkz1059 pubmed: 31732725 pmcid: 7145512
Shi C, Wang S, Xia EH, Jiang JJ, Zeng FC, Gao LZ. Full transcription of the chloroplast genome in photosynthetic eukaryotes. Sci Rep. 2016;6:30135. https://doi.org/10.1038/srep30135 .
doi: 10.1038/srep30135 pubmed: 27456469 pmcid: 4960489
Sanitá Lima M, Smith DR. Pervasive transcription of mitochondrial, plastid, and nucleomorph genomes across diverse plastid-bearing species. Genome Biol Evol. 2017;9:2650–7. https://doi.org/10.1093/gbe/evx207 .
doi: 10.1093/gbe/evx207 pubmed: 29048528 pmcid: 5737562
Ishibashi K, Small I, Shikanai T. Evolutionary model of plastidial RNA editing in angiosperms presumed from genome-wide analysis of Amborella Trichopoda. Plant Cell Physiol. 2019;60:2141–51. https://doi.org/10.1093/pcp/pcz111 .
doi: 10.1093/pcp/pcz111 pubmed: 31150097
Raubeson L, Jansen R. Chloroplast genomes of plants. In: Henry R, editor. Plant diversity and evolution: genotypic and phenotypic variation in higher plants. Cambridge, MA: CABI Publishing; 2005. p. 45–68. https://doi.org/10.1079/9780851999043.0045 .
doi: 10.1079/9780851999043.0045
Cui L, Leebens-Mack J, Wang LS, Tang J, Rymarquis L, Stern DB, et al. Adaptive evolution of chloroplast genome structure inferred using a parametric bootstrap approach. BMC Evol Biol. 2006;6:13. https://doi.org/10.1186/1471-2148-6-13 .
doi: 10.1186/1471-2148-6-13 pubmed: 16469102 pmcid: 1421436
Wu CS, Chaw SM. Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): evolution towards shorter intergenic spacers. Plant Biotechnol J. 2014;12:344–53. https://doi.org/10.1111/pbi.12141 .
doi: 10.1111/pbi.12141 pubmed: 24283260
Chaw SM, Wu CS, Sudianto E. Evolution of gymnosperm plastid genomes. In: Chaw SM, Jansen RK, editors. Advances in botanical research. Cambridge, MA: Academic Press; 2018. p. 195–222. https://doi.org/10.1016/bs.abr.2017.11.018 .
doi: 10.1016/bs.abr.2017.11.018
Sudianto E, Wu CS, Chaw SM. The origin and evolution of plastid genome downsizing in southern hemispheric cypresses (Cupressaceae). Front Plant Sci. 2020;11:901. https://doi.org/10.3389/fpls.2020.00901 .
doi: 10.3389/fpls.2020.00901 pubmed: 32655606 pmcid: 7324783
Hsu CY, Wu CS, Chaw SM. Birth of four chimeric plastid gene clusters in Japanese umbrella pine. Genome Biol Evol. 2016;8:1776–84. https://doi.org/10.1093/gbe/evw109 .
doi: 10.1093/gbe/evw109 pubmed: 27269365 pmcid: 4943181
Wu CS, Chaw SM. Large-scale comparative analysis reveals the mechanisms driving plastomic compaction, reduction, and inversions in conifers II (Cupressophytes). Genome Biol Evol. 2016;8:3740–50. https://doi.org/10.1093/gbe/evw278 .
doi: 10.1093/gbe/evw278 pubmed: 28039231 pmcid: 5491842
Mills JD, Kawahara Y, Janitz M. Strand-specific RNA-Seq provides greater resolution of transcriptome profiling. Curr Genomics. 2013;14:173–81. https://doi.org/10.2174/1389202911314030003 .
doi: 10.2174/1389202911314030003 pubmed: 24179440 pmcid: 3664467
Wu CS, Lin CP, Hsu CY, Wang RJ, Chaw SM. Comparative chloroplast genomes of Pinaceae: insights into the mechanism of diversified genomic organizations. Genome Biol Evol. 2011;3:309–19. https://doi.org/10.1093/gbe/evr026 .
doi: 10.1093/gbe/evr026 pubmed: 21402866 pmcid: 5654405
Westhoff P, Herrmann RG. Complex RNA maturation in chloroplasts. The psbB operon from spinach. Eur J Biochem. 1988;171:551–64. https://doi.org/10.1111/j.1432-1033.1988.tb13824.x .
doi: 10.1111/j.1432-1033.1988.tb13824.x pubmed: 2831053
Leslie AB, Beaulieu J, Holman G, Campbell CS, Mei W, Raubeson LR, et al. An overview of extant conifer evolution from the perspective of the fossil record. Am J Bot. 2018;105:1531–44. https://doi.org/10.1002/ajb2.1143 .
doi: 10.1002/ajb2.1143 pubmed: 30157290
Sloan DB, MacQueen AH, Alverson AJ, Palmer JD, Taylor DR. Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs retroprocessing as the driving force. Genetics. 2010;185:1369–80. https://doi.org/10.1534/genetics.110.118000 .
doi: 10.1534/genetics.110.118000 pubmed: 20479143 pmcid: 2927763
Bentolila S, Oh J, Hanson MR, Bukowski R. Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS genet. 2013;9:e1003584. https://doi.org/10.1371/journal.pgen.1003584 .
doi: 10.1371/journal.pgen.1003584 pubmed: 23818871 pmcid: 3688494
Chen TC, Liu YC, Wang X, Wu CH, Huang CH, Chang CC. Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp formosana Bot Stud. Bot stud. 2017;58:38. https://doi.org/10.1186/s40529-017-0193-7 .
doi: 10.1186/s40529-017-0193-7 pubmed: 28916985 pmcid: 5602750
Hotto AM, Germain A, Stern DB. Plastid non-coding RNAs: emerging candidates for gene regulation. Trends Plant Sci. 2012;17:737–44. https://doi.org/10.1016/j.tplants.2012.08.002 .
doi: 10.1016/j.tplants.2012.08.002 pubmed: 22981395
Manavski N, Schmid LM, Meurer J. RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem. 2018;62:51–64. https://doi.org/10.1042/EBC20170061 .
doi: 10.1042/EBC20170061 pubmed: 29453323 pmcid: 5897788
Stern DB, Goldschmidt-Clermont M, Hanson MR. Chloroplast RNA metabolism. Annu Rev Plant Biol. 2010;61:125–55. https://doi.org/10.1146/annurev-arplant-042809-112242 .
doi: 10.1146/annurev-arplant-042809-112242 pubmed: 20192740
Ji D, Manavski N, Meurer J, Zhang L, Chi W. Regulated chloroplast transcription termination. Biochim Biophys Acta Bioenerg. 2019;1860:69–77. https://doi.org/10.1016/j.bbabio.2018.11.011 .
doi: 10.1016/j.bbabio.2018.11.011 pubmed: 30414934
Guo W, Grewe F, Cobo-Clark A, Fan W, Duan Z, Adams RP, et al. 2014. Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biol Evol. 2014;6:580–90. https://doi.org/10.1093/gbe/evu046 .
doi: 10.1093/gbe/evu046 pubmed: 24586030 pmcid: 3971597
Sullivan AR, Schiffthaler B, Thompson SL, Street NR, Wang XR. Interspecific plastome recombination reflects ancient reticulate evolution in Picea (Pinaceae). Mol Biol Evol. 2017;34:1689–701. https://doi.org/10.1093/molbev/msx111 .
doi: 10.1093/molbev/msx111 pubmed: 28383641 pmcid: 5455968
Qu XJ, Wu CS, Chaw SM, Yi TS. Insights into the existence of isomeric plastomes in Cupressoideae (Cupressaceae). Genome Biol Evol. 2017;9:1110–9. https://doi.org/10.1093/gbe/evx071 .
doi: 10.1093/gbe/evx071 pubmed: 28431152 pmcid: 5408090
Fu CN, Wu CS, Ye LJ, Mo ZQ, Liu J, Chang YW, et al. Prevalence of isomeric plastomes and effectiveness of plastome super-barcodes in yews (Taxus) worldwide. Sci Rep. 2019;9:2773. https://doi.org/10.1038/s41598-019-39161-x .
doi: 10.1038/s41598-019-39161-x pubmed: 30808961 pmcid: 6391452
Stewart CN Jr, Via LE. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques. 1993;14:748–50.
pubmed: 8512694
Kolosova N, Miller B, Ralph S, Ellis BE, Douglas C, Ritland K, et al. Isolation of high-quality RNA from gymnosperm and angiosperm trees. Biotechniques. 2004;36:821–4. https://doi.org/10.2144/04365ST06 .
doi: 10.2144/04365ST06 pubmed: 15152602
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021 .
doi: 10.1089/cmb.2012.0021 pubmed: 22506599 pmcid: 3342519
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC bioinformatics. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421 .
doi: 10.1186/1471-2105-10-421 pubmed: 20003500 pmcid: 2803857
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18. https://doi.org/10.1186/2047-217X-1-18 .
doi: 10.1186/2047-217X-1-18 pubmed: 23587118 pmcid: 3626529
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. https://doi.org/10.1186/gb-2013-14-4-r36 .
doi: 10.1186/gb-2013-14-4-r36 pubmed: 23618408 pmcid: 23618408
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9. https://doi.org/10.1093/bioinformatics/btp352 .
doi: 10.1093/bioinformatics/btp352 pubmed: 19505943 pmcid: 19505943
Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40. https://doi.org/10.1093/bioinformatics/btx364 .
doi: 10.1093/bioinformatics/btx364 pubmed: 28645171 pmcid: 5870712
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45. https://doi.org/10.1101/gr.092759.109 .
doi: 10.1101/gr.092759.109 pubmed: 19541911 pmcid: 19541911
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;19:1792–7. https://doi.org/10.1093/nar/gkh340 .
doi: 10.1093/nar/gkh340
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033 .
doi: 10.1093/bioinformatics/btu033 pubmed: 24451623 pmcid: 3998144

Auteurs

Chung-Shien Wu (CS)

Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.

Edi Sudianto (E)

Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.

Shu-Miaw Chaw (SM)

Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan. smchaw@sinica.edu.tw.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH