Physiological, genomic, and sulfur isotopic characterization of methanol metabolism by Desulfovibrio carbinolicus.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2021
2021
Historique:
received:
06
09
2020
accepted:
21
12
2020
entrez:
14
1
2021
pubmed:
15
1
2021
medline:
7
9
2021
Statut:
epublish
Résumé
Methanol is often considered as a non-competitive substrate for methanogenic archaea, but an increasing number of sulfate-reducing microorganisms (SRMs) have been reported to be capable of respiring with methanol as an electron donor. A better understanding of the fate of methanol in natural or artificial anaerobic systems thus requires knowledge of the methanol dissimilation by SRMs. In this study, we describe the growth kinetics and sulfur isotope effects of Desulfovibrio carbinolicus, a methanol-oxidizing sulfate-reducing deltaproteobacterium, together with its genome sequence and annotation. D. carbinolicus can grow with a series of alcohols from methanol to butanol. Compared to longer-chain alcohols, however, specific growth and respiration rates decrease by several fold with methanol as an electron donor. Larger sulfur isotope fractionation accompanies slowed growth kinetics, indicating low chemical potential at terminal reductive steps of respiration. In a medium containing both ethanol and methanol, D. carbinolicus does not consume methanol even after the cessation of growth on ethanol. Among the two known methanol dissimilatory systems, the genome of D. carbinolicus contains the genes coding for alcohol dehydrogenase but lacks enzymes analogous to methanol methyltransferase. We analyzed the genomes of 52 additional species of sulfate-reducing bacteria that have been tested for methanol oxidation. There is no apparent relationship between phylogeny and methanol metabolizing capacity, but most gram-negative methanol oxidizers grow poorly, and none carry homologs for methyltransferase (mtaB). Although the amount of available data is limited, it is notable that more than half of the known gram-positive methanol oxidizers have both enzymatic systems, showing enhanced growth relative to the SRMs containing only alcohol dehydrogenase genes. Thus, physiological, genomic, and sulfur isotopic results suggest that D. carbinolicus and close relatives have the ability to metabolize methanol but likely play a limited role in methanol degradation in most natural environments.
Identifiants
pubmed: 33444327
doi: 10.1371/journal.pone.0245069
pii: PONE-D-20-28019
pmc: PMC7808614
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Sulfur Isotopes
0
Methanol
Y4S76JWI15
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0245069Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Int J Syst Evol Microbiol. 2007 Mar;57(Pt 3):520-526
pubmed: 17329777
Int J Syst Evol Microbiol. 2002 May;52(Pt 3):765-772
pubmed: 12054236
Int J Syst Bacteriol. 1999 Oct;49 Pt 4:1801-8
pubmed: 10555363
Appl Microbiol Biotechnol. 2007 Jan;73(5):1203-11
pubmed: 17028873
Appl Environ Microbiol. 1987 Apr;53(4):802-9
pubmed: 16347324
Arch Microbiol. 1981 Jul;129(5):395-400
pubmed: 7283636
PLoS One. 2013;8(3):e59188
pubmed: 23527128
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
Int J Syst Evol Microbiol. 2006 May;56(Pt 5):1019-1024
pubmed: 16627648
Appl Environ Microbiol. 1984 Oct;48(4):719-25
pubmed: 16346640
Int J Syst Evol Microbiol. 2008 Nov;58(Pt 11):2529-35
pubmed: 18984688
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18116-25
pubmed: 25362045
Water Sci Technol. 2001;44(8):7-14
pubmed: 11730139
Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1639-1642
pubmed: 15388722
Biodegradation. 2000;11(6):429-39
pubmed: 11587448
Can J Microbiol. 1975 Oct;21(10):1602-7
pubmed: 1201506
Int J Syst Evol Microbiol. 2017 Jun;67(6):1887-1893
pubmed: 28646634
Stand Genomic Sci. 2013 Apr 15;8(1):69-87
pubmed: 23961313
Int J Syst Bacteriol. 1999 Oct;49 Pt 4:1631-43
pubmed: 10555345
Appl Environ Microbiol. 1982 Dec;44(6):1270-6
pubmed: 16346144
Science. 2014 Nov 7;346(6210):739-41
pubmed: 25378622
Arch Microbiol. 1989;152(6):556-63
pubmed: 2589921
Int J Syst Evol Microbiol. 2008 Nov;58(Pt 11):2541-8
pubmed: 18984690
ISME J. 2017 Oct 31;:
pubmed: 29087380
Curr Microbiol. 2011 Feb;62(2):486-91
pubmed: 20814681
Microbes Environ. 2016 Jun 25;31(2):190-3
pubmed: 27301420
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11244-9
pubmed: 23733944
Int J Syst Evol Microbiol. 2006 Sep;56(Pt 9):2063-2069
pubmed: 16957100
Science. 2002 Dec 20;298(5602):2372-4
pubmed: 12493910
FEMS Microbiol Ecol. 2004 Sep 1;49(3):489-94
pubmed: 19712297
Int J Syst Evol Microbiol. 2000 Jul;50 Pt 4:1611-1619
pubmed: 10939668
Int J Syst Evol Microbiol. 2002 Jul;52(Pt 4):1361-1368
pubmed: 12148651
Appl Environ Microbiol. 2001 Feb;67(2):888-94
pubmed: 11157259
Extremophiles. 2007 Mar;11(2):295-303
pubmed: 17136317
Int J Syst Evol Microbiol. 2003 Sep;53(Pt 5):1223-1229
pubmed: 13129999
Int J Syst Evol Microbiol. 2001 Jan;51(Pt 1):133-40
pubmed: 11211250
Nat Commun. 2019 Jan 9;10(1):44
pubmed: 30626879
J Bacteriol. 1966 Oct;92(4):1122-7
pubmed: 5927208
Int J Syst Evol Microbiol. 2010 Jan;60(Pt 1):33-38
pubmed: 19648352
Int J Syst Evol Microbiol. 2000 May;50 Pt 3:1287-1295
pubmed: 10843074
Extremophiles. 2003 Aug;7(4):283-90
pubmed: 12910388
Extremophiles. 2015 Jan;19(1):39-47
pubmed: 25370366
Biochim Biophys Acta. 1983 Dec 27;761(3):223-30
pubmed: 6360219
Eur J Biochem. 1997 Mar 1;244(2):426-33
pubmed: 9119008
Front Microbiol. 2015 Dec 24;6:1392
pubmed: 26733949
Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):593-598
pubmed: 22544786
Geobiology. 2016 Jan;14(1):91-101
pubmed: 26189479
Int J Syst Evol Microbiol. 2009 Dec;59(Pt 12):3100-4
pubmed: 19643880
Front Microbiol. 2013 Jun 25;4:171
pubmed: 23805134
Extremophiles. 2010 May;14(3):305-12
pubmed: 20358236
Nat Commun. 2018 Jan 16;9(1):239
pubmed: 29339722
BMC Bioinformatics. 2010 Mar 08;11:119
pubmed: 20211023
Environ Microbiol. 2010 Oct;12(10):2738-54
pubmed: 20482743
Int J Syst Evol Microbiol. 2006 Dec;56(Pt 12):2729-2736
pubmed: 17158969
Int J Syst Evol Microbiol. 2014 Aug;64(Pt 8):2907-2914
pubmed: 24876241
J Bacteriol. 1993 May;175(10):2859-63
pubmed: 8491707
Bioresour Technol. 2013 Jun;137:349-57
pubmed: 23597763
Bacteriol Rev. 1977 Mar;41(1):100-80
pubmed: 860983
J Gen Microbiol. 1964 Feb;34:195-212
pubmed: 14135528
Int J Syst Evol Microbiol. 2013 Mar;63(Pt 3):959-964
pubmed: 22659505
Int J Syst Bacteriol. 1999 Apr;49 Pt 2:859-65
pubmed: 10319511