Revealing nascent RNA processing dynamics with nano-COP.


Journal

Nature protocols
ISSN: 1750-2799
Titre abrégé: Nat Protoc
Pays: England
ID NLM: 101284307

Informations de publication

Date de publication:
03 2021
Historique:
received: 03 07 2020
accepted: 20 11 2020
pubmed: 31 1 2021
medline: 7 4 2021
entrez: 30 1 2021
Statut: ppublish

Résumé

During maturation, eukaryotic precursor RNAs undergo processing events including intron splicing, 3'-end cleavage, and polyadenylation. Here we describe nanopore analysis of co-transcriptional processing (nano-COP), a method for probing the timing and patterns of RNA processing. An extension of native elongating transcript sequencing, which quantifies transcription genome-wide through short-read sequencing of nascent RNA 3' ends, nano-COP uses long-read nascent RNA sequencing to observe global patterns of RNA processing. First, nascent RNA is stringently purified through a combination of 4-thiouridine metabolic labeling and cellular fractionation. In contrast to cDNA or short-read-based approaches relying on reverse transcription or amplification, the sample is sequenced directly through nanopores to reveal the native context of nascent RNA. nano-COP identifies both active transcription sites and splice isoforms of single RNA molecules during synthesis, providing insight into patterns of intron removal and the physical coupling between transcription and splicing. The nano-COP protocol yields data within 3 d.

Identifiants

pubmed: 33514943
doi: 10.1038/s41596-020-00469-y
pii: 10.1038/s41596-020-00469-y
pmc: PMC8713461
mid: NIHMS1765166
doi:

Substances chimiques

RNA Precursors 0
RNA, Messenger 0
RNA 63231-63-0
RNA Polymerase II EC 2.7.7.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

1343-1375

Subventions

Organisme : NIGMS NIH HHS
ID : F31 GM122133
Pays : United States
Organisme : CIHR
Pays : Canada
Organisme : NHGRI NIH HHS
ID : R01 HG010538
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM136794
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM117333
Pays : United States
Organisme : NHGRI NIH HHS
ID : R21 HG009264
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG007173
Pays : United States

Références

Keohavong, P., Gattoni, R., LeMoullec, J. M., Jacob, M. & Stévenin, J. The orderly splicing of the first three leaders of the adenovirus-2 major late transcript. Nucleic Acids Res. 10, 1215–1229 (1982).
pubmed: 6175954 pmcid: 320520 doi: 10.1093/nar/10.4.1215
Mariman, E. C., van Beek-Reinders, R. J. & van Venrooij, W. J. Alternative splicing pathways exist in the formation of adenoviral late messenger RNAs. J. Mol. Biol. 163, 239–256 (1983).
pubmed: 6302268 doi: 10.1016/0022-2836(83)90005-0
Beyer, A. L. & Osheim, Y. N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2, 754–765 (1988).
pubmed: 3138163 doi: 10.1101/gad.2.6.754
Audibert, A., Weil, D. & Dautry, F. In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol. Cell. Biol. 22, 6706–6718 (2002).
pubmed: 12215528 pmcid: 134034 doi: 10.1128/MCB.22.19.6706-6718.2002
Singh, J. & Padgett, R. A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133 (2009).
pubmed: 19820712 pmcid: 2783620 doi: 10.1038/nsmb.1666
Coulon, A. et al. Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3, e03939 (2014).
pmcid: 4210818 doi: 10.7554/eLife.03939
Martin, R. M., Rino, J., Carvalho, C., Kirchhausen, T. & Carmo-Fonseca, M. Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep. 4, 1144–1155 (2013).
pubmed: 24035393 pmcid: 3805459 doi: 10.1016/j.celrep.2013.08.013
Rabani, M. et al. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159, 1698–1710 (2014).
pubmed: 25497548 pmcid: 4272607 doi: 10.1016/j.cell.2014.11.015
Wachutka, L., Caizzi, L., Gagneur, J. & Cramer, P. Global donor and acceptor splicing site kinetics in human cells. eLife 8, e45056 (2019).
Wan, Y. et al. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. SSRN Electron. J. https://doi.org/10.2139/ssrn.3467157 (2019).
Takahara, K. et al. Order of intron removal influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal Pro-α1(V) N-propeptides and ehlers-danlos syndrome type I. Am. J. Hum. Genet. 71, 451–465 (2002).
pubmed: 12145749 pmcid: 379186 doi: 10.1086/342099
Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev. 28, 2663–2676 (2014).
pubmed: 25452276 pmcid: 4248296 doi: 10.1101/gad.252106.114
Dujardin, G. et al. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54, 683–690 (2014).
pubmed: 24793692 doi: 10.1016/j.molcel.2014.03.044
De la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).
pubmed: 14536091 doi: 10.1016/j.molcel.2003.08.001
Kessler, O., Jiang, Y. & Chasin, L. A. Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Mol. Cell. Biol. 13, 6211–6222 (1993).
pubmed: 8413221 pmcid: 364680
Schwarze, U., Starman, B. J. & Byers, P. H. Redefinition of exon 7 in the COL1A1 gene of type I collagen by an intron 8 splice-donor–site mutation in a form of osteogenesis imperfecta: influence of intron splice order on outcome of splice-site mutation. Am. J. Hum. Genet. 65, 336–344 (1999).
pubmed: 10417276 pmcid: 1377932 doi: 10.1086/302512
Kim, S. W. et al. Widespread intra-dependencies in the removal of introns from human transcripts. Nucleic Acids Res. 45, 9503–9513 (2017).
pubmed: 28934498 pmcid: 5766209 doi: 10.1093/nar/gkx661
Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998.e8 (2020).
pubmed: 31839405 doi: 10.1016/j.molcel.2019.11.017
Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).
pubmed: 21248844 doi: 10.1038/nature09652
Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).
pubmed: 25910208 pmcid: 4528962 doi: 10.1016/j.cell.2015.03.010
Eid, J. et al. Single polymerase molecules. Science 323, 133–138 (2009).
pubmed: 19023044 doi: 10.1126/science.1162986
Weirather, J. L. Et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Res. 6, 100 (2017).
Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).
pubmed: 29334379 doi: 10.1038/nmeth.4577
Soneson, C. et al. A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat. Commun. 10, 3359 (2019).
pubmed: 31366910 pmcid: 6668388 doi: 10.1038/s41467-019-11272-z
Jia, J. et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat. Plants 6, 780–788 (2020).
pubmed: 32541953 doi: 10.1038/s41477-020-0688-1
Danko, C. G. et al. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol. Cell 50, 212–222 (2013).
pubmed: 23523369 pmcid: 3640649 doi: 10.1016/j.molcel.2013.02.015
Veloso, A. et al. Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res. 24, 896–905 (2014).
pubmed: 24714810 pmcid: 4032854 doi: 10.1101/gr.171405.113
Dölken, L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959–1972 (2008).
pubmed: 18658122 pmcid: 2525961 doi: 10.1261/rna.1136108
Windhager, L. et al. Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res. 22, 2031–2042 (2012).
pubmed: 22539649 pmcid: 3460197 doi: 10.1101/gr.131847.111
Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016).
pubmed: 27257258 doi: 10.1126/science.aad9841
Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).
pubmed: 21516085 pmcid: 3114636 doi: 10.1038/nbt.1861
Gregersen, L. H., Mitter, R. & Svejstrup, J. Q. Using Ttchem-seq for profiling nascent transcription and measuring transcript elongation. Nat. Protoc. 15, 604–627 (2020).
pubmed: 31915390 doi: 10.1038/s41596-019-0262-3
Pai, A. A. et al. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture. eLife 6, 1–26 (2017).
doi: 10.7554/eLife.32537
Maier, K. C., Gressel, S., Cramer, P. & Schwalb, B. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms. Genome Res. 30, 1332–1344 (2020).
pubmed: 32887688 pmcid: 7545145 doi: 10.1101/gr.257857.119
Carrillo Oesterreich, F. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165, 372–381 (2016).
doi: 10.1016/j.cell.2016.02.045
Brody, Y. et al. The In vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PloS Biol. 9, e1000573 (2011).
pubmed: 21264352 pmcid: 3019111 doi: 10.1371/journal.pbio.1000573
Herzel, L., Straube, K. & Neugebauer, K. M. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Genome Res. 28, 1008–1019 (2018).
pubmed: 29903723 pmcid: 6028129 doi: 10.1101/gr.232025.117
Mayer, A. & Churchman, L. S. Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat. Protoc. 11, 813–833 (2016).
pubmed: 27010758 pmcid: 5326677 doi: 10.1038/nprot.2016.047
Lindell, T. J., Weinberg, F., Morris, P. W., Roeder, R. G. & Rutter, W. J. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170, 447–449 (1970).
pubmed: 4918258 doi: 10.1126/science.170.3956.447
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
pubmed: 29750242 pmcid: 6137996 doi: 10.1093/bioinformatics/bty191
Han, F. & Lillard, S. J. In-situ sampling and separation of RNA from individual mammalian cells. Anal. Chem. 72, 4073–4079 (2000).
pubmed: 10994967 doi: 10.1021/ac000428g
Jackson, D. A., Iborra, F. J., Manders, E. M. & Cook, P. R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell 9, 1523–1536 (1998).
pubmed: 9614191 pmcid: 25378 doi: 10.1091/mbc.9.6.1523
Rädle, B. et al. Metabolic labeling of newly transcribed RNA for high resolution gene expression profiling of RNA synthesis, processing and decay in cell culture. J. Vis. Exp. https://doi.org/10.3791/50195 (2013).
Tani, H. et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22, 947–956 (2012).
pubmed: 22369889 pmcid: 3337439 doi: 10.1101/gr.130559.111
Schofield, J. A., Duffy, E. E., Kiefer, L., Sullivan, M. C. & Simon, M. D. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods 15, 221–225 (2018).
pubmed: 29355846 pmcid: 5831505 doi: 10.1038/nmeth.4582
Kovaka, S., Fan, Y., Ni, B., Timp, W. & Schatz, M. C. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0731-9 (2020).
Payne, A. et al. Nanopore adaptive sequencing for mixed samples, whole exome capture and targeted panels. Preprint at bioRxiv https://doi.org/10.1101/2020.02.03.926956 (2020).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Dale, R. K., Pedersen, B. S. & Quinlan, A. R. Pybedtools: a flexible Python library for manipulating genomic datasets and annotations. Bioinformatics 27, 3423–3424 (2011).
pubmed: 21949271 pmcid: 3232365 doi: 10.1093/bioinformatics/btr539
Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).
pubmed: 31740818 pmcid: 7768885 doi: 10.1038/s41592-019-0617-2
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
pmcid: 3439153 doi: 10.1038/nature11247

Auteurs

Heather L Drexler (HL)

Department of Genetics, Harvard Medical School, Boston, MA, USA.

Karine Choquet (K)

Department of Genetics, Harvard Medical School, Boston, MA, USA.

Hope E Merens (HE)

Department of Genetics, Harvard Medical School, Boston, MA, USA.

Paul S Tang (PS)

Ontario Institute for Cancer Research, Toronto, Ontario, Canada.

Jared T Simpson (JT)

Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.

L Stirling Churchman (LS)

Department of Genetics, Harvard Medical School, Boston, MA, USA. churchman@genetics.med.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH