Molecular characterization of DICER1-mutated pituitary blastoma.
Adolescent
Adult
Aged
Aged, 80 and over
Antigens, Neoplasm
/ genetics
Child
Child, Preschool
DEAD-box RNA Helicases
/ genetics
Enhancer of Zeste Homolog 2 Protein
/ genetics
Female
Fetus
Humans
Ki-67 Antigen
/ genetics
Male
Methylation
MicroRNAs
/ genetics
Middle Aged
Mutation
Phosphatidylinositol 3-Kinases
/ genetics
Pituitary Neoplasms
/ genetics
Ribonuclease III
/ genetics
Sequence Analysis, RNA
Signal Transduction
Tissue Array Analysis
Whole Genome Sequencing
DICER1
DICER1 syndrome
Differentiation
Methylation
PI3K
PRAME
Pituitary blastoma
Pre-miRNA
Whole genome sequencing
mRNA-sequencing
miRNA
miRNA-sequencing
Journal
Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
22
12
2020
accepted:
09
02
2021
revised:
08
02
2021
pubmed:
2
3
2021
medline:
16
2
2022
entrez:
1
3
2021
Statut:
ppublish
Résumé
Pituitary blastoma (PitB) has recently been identified as a rare and potentially lethal pediatric intracranial tumor. All cases that have been studied molecularly possess at least one DICER1 pathogenic variant. Here, we characterized nine pituitary samples, including three fresh frozen PitBs, three normal fetal pituitary glands and three normal postnatal pituitary glands using small-RNA-Seq, RNA-Seq, methylation profiling, whole genome sequencing and Nanostring® miRNA analyses; an extended series of 21 pituitary samples was used for validation purposes. These analyses demonstrated that DICER1 RNase IIIb hotspot mutations in PitBs induced improper processing of miRNA precursors, resulting in aberrant 5p-derived miRNA products and a skewed distribution of miRNAs favoring mature 3p over 5p miRNAs. This led to dysregulation of hundreds of 5p and 3p miRNAs and concomitant dysregulation of numerous mRNA targets. Gene expression analysis revealed PRAME as the most significantly upregulated gene (500-fold increase). PRAME is a member of the Retinoic Acid Receptor (RAR) signaling pathway and in PitBs, the RAR, WNT and NOTCH pathways are dysregulated. Cancer Hallmarks analysis showed that PI3K pathway is activated in the tumors. Whole genome sequencing demonstrated a quiet genome with very few somatic alterations. The comparison of methylation profiles to publicly available data from ~ 3000 other central nervous system tumors revealed that PitBs have a distinct methylation profile compared to all other tumors, including pituitary adenomas. In conclusion, this comprehensive characterization of DICER1-related PitB revealed key molecular underpinnings of PitB and identified pathways that could potentially be exploited in the treatment of this tumor.
Identifiants
pubmed: 33644822
doi: 10.1007/s00401-021-02283-6
pii: 10.1007/s00401-021-02283-6
doi:
Substances chimiques
Antigens, Neoplasm
0
Ki-67 Antigen
0
MKI67 protein, human
0
MicroRNAs
0
PRAME protein, human
0
EZH2 protein, human
EC 2.1.1.43
Enhancer of Zeste Homolog 2 Protein
EC 2.1.1.43
DICER1 protein, human
EC 3.1.26.3
Ribonuclease III
EC 3.1.26.3
DEAD-box RNA Helicases
EC 3.6.4.13
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
929-944Subventions
Organisme : Medical Research Council
ID : MR/M018539/1
Pays : United Kingdom
Organisme : CIHR
ID : FDN-148390
Pays : Canada
Références
Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638
doi: 10.1093/bioinformatics/btu638
pubmed: 25260700
pmcid: 25260700
Andrews S, FastQC (2019) A Quality Control tool for High Throughput Sequence Data. http://www.bioinformaticsbabrahamacuk/projects/fastqc/ : Doi citeulike-article-id:11583827
Anglesio M, Wang Y, Yang W, Senz J, Wan A, Heravi-Moussavi A et al (2012) Cancer-associated somatic DICER1 hotspot mutations cause defective miRNA processing and reverse strand expression bias to predominantly mature 3p strands through loss of 5p strand cleavage. J Pathol 229:400–409. https://doi.org/10.1002/path.4135
doi: 10.1002/path.4135
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD et al (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369. https://doi.org/10.1093/bioinformatics/btu049
doi: 10.1093/bioinformatics/btu049
pubmed: 24478339
pmcid: 4016708
Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G et al (2012) Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28:423–425. https://doi.org/10.1093/bioinformatics/btr670
doi: 10.1093/bioinformatics/btr670
pubmed: 22155870
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
doi: 10.1093/bioinformatics/btu170
pubmed: 4103590
pmcid: 4103590
Boon K, Edwards JB, Siu IM, Olschner D, Eberhart CG, Marra MA et al (2003) Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene 22:7687–7694. https://doi.org/10.1038/sj.onc.1207043
doi: 10.1038/sj.onc.1207043
pubmed: 14576832
Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474. https://doi.org/10.1038/nature26000
doi: 10.1038/nature26000
pubmed: 29539639
pmcid: 6093218
Chen J, Wang Y, McMonechy MK, Anglesio MS, Yang W, Senz J et al (2015) Recurrent DICER1 hotspot mutations in endometrial tumours and their impact on microRNA biogenesis. J Pathol 237:215–225. https://doi.org/10.1002/path.4569
doi: 10.1002/path.4569
pubmed: 26033159
Cheung LYM, George AS, McGee SR, Daly AZ, Brinkmeier ML, Ellsworth BS et al (2018) Single-cell RNA sequencing reveals novel markers of male pituitary stem cells and hormone-producing cell types. Endocrinology 159:3910–3924. https://doi.org/10.1210/en.2018-00750
doi: 10.1210/en.2018-00750
pubmed: 30335147
pmcid: 6240904
Davis SW, Castinetti F, Carvalho LR, Ellsworth BS, Potok MA, Lyons RH et al (2010) Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. Mol Cell Endocrinol 323:4–19. https://doi.org/10.1016/j.mce.2009.12.012
doi: 10.1016/j.mce.2009.12.012
pubmed: 20025935
de Kock L, Priest JR, Foulkes WD, Alexandrescu S (2020) An update on the central nervous system manifestations of DICER1 syndrome. Acta Neuropathol 139:689–701. https://doi.org/10.1007/s00401-019-01997-y
doi: 10.1007/s00401-019-01997-y
pubmed: 30953130
de Kock L, Sabbaghian N, Plourde F, Srivastava A, Weber E, Bouron-Dal Soglio D et al (2014) Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol 128:111–122. https://doi.org/10.1007/s00401-014-1285-z
doi: 10.1007/s00401-014-1285-z
pubmed: 24839956
pmcid: 4129448
de Kock L, Wu MK, Foulkes WD (2019) Ten years of DICER1 mutations: Provenance, distribution, and associated phenotypes. Hum Mutat 40:1939–1953. https://doi.org/10.1002/humu.23877
doi: 10.1002/humu.23877
pubmed: 31342592
Devnath S, Inoue K (2008) An insight to pituitary folliculo-stellate cells. J Neuroendocrinol 20:687–691. https://doi.org/10.1111/j.1365-2826.2008.01716.x
doi: 10.1111/j.1365-2826.2008.01716.x
pubmed: 18601690
Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R (2005) The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 122:835–847. https://doi.org/10.1016/j.cell.2005.07.003
doi: 10.1016/j.cell.2005.07.003
pubmed: 16179254
Foulkes WD, Priest JR, Duchaine TF (2014) DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 14:662–672. https://doi.org/10.1038/nrc3802
doi: 10.1038/nrc3802
pubmed: 25176334
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. https://doi.org/10.1186/gb-2004-5-10-r80
doi: 10.1186/gb-2004-5-10-r80
pubmed: 15461798
pmcid: 545600
Guaraldi F, Storr HL, Ghizzoni L, Ghigo E, Savage MO (2014) Paediatric pituitary adenomas: a decade of change. Horm Res Paediatr 81:145–155. https://doi.org/10.1159/000357673
doi: 10.1159/000357673
pubmed: 24525527
Guillerman RP, Foulkes WD, Priest JR (2019) Imaging of DICER1 syndrome. Pediatr Radiol 49:1488–1505. https://doi.org/10.1007/s00247-019-04429-x
doi: 10.1007/s00247-019-04429-x
pubmed: 31620849
Heravi-Moussavi A, Anglesio MS, Cheng SW, Senz J, Yang W, Prentice L et al (2012) Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med 366:234–242. https://doi.org/10.1056/NEJMoa1102903
doi: 10.1056/NEJMoa1102903
pubmed: 22187960
Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D et al (2009) DICER1 mutations in familial pleuropulmonary blastoma. Science 325:965. https://doi.org/10.1126/science.1174334
doi: 10.1126/science.1174334
pubmed: 19556464
pmcid: 3098036
Ho Y, Hu P, Peel MT, Chen S, Camara PG, Epstein DJ et al (2019) Single cell transcriptomic analysis of the adult mouse pituitary reveals a novel multi-hormone cell cluster and physiologic demand-induced lineage plasticity. Biorxiv 2019:475558. https://doi.org/10.1101/475558
doi: 10.1101/475558
Horvath E, Coire CI, Kovacs K, Smyth HS (2010) Folliculo-stellate cells of the human pituitary as adult stem cells: examples of their neoplastic potential. Ultrastruct Pathol 34:133–139. https://doi.org/10.3109/01913121003662247
doi: 10.3109/01913121003662247
pubmed: 20455662
Horvath E, Kovacs K (2002) Folliculo-stellate cells of the human pituitary: a type of adult stem cell? Ultrastruct Pathol 26:219–228. https://doi.org/10.1080/01913120290104476
doi: 10.1080/01913120290104476
pubmed: 12227947
Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C et al (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6:199–208. https://doi.org/10.1016/s1074-7613(00)80426-4
doi: 10.1016/s1074-7613(00)80426-4
pubmed: 9047241
Jessa S, Blanchet-Cohen A, Krug B, Vladoiu M, Coutelier M, Faury D et al (2019) Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 51:1702–1713. https://doi.org/10.1038/s41588-019-0531-7
doi: 10.1038/s41588-019-0531-7
pubmed: 31768071
pmcid: 6885128
Keil MF, Stratakis CA (2008) Pituitary tumors in childhood: update of diagnosis, treatment and molecular genetics. Expert Rev Neurother 8:563–574. https://doi.org/10.1586/14737175.8.4.563
doi: 10.1586/14737175.8.4.563
pubmed: 18416659
pmcid: 2743125
Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT (2009) Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30:790–829. https://doi.org/10.1210/er.2009-0008
doi: 10.1210/er.2009-0008
pubmed: 2806371
pmcid: 2806371
Khan NE, Bauer AJ, Schultz KAP, Doros L, Decastro RM, Ling A et al (2017) Quantification of thyroid cancer and multinodular Goiter risk in the DICER1 syndrome: a family-based cohort study. J Clin Endocrinol Metab 102:1614–1622. https://doi.org/10.1210/jc.2016-2954
doi: 10.1210/jc.2016-2954
pubmed: 28323992
pmcid: 5443331
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
doi: 10.1038/nmeth.1923
pubmed: 22388286
pmcid: 22388286
Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25
doi: 10.1186/gb-2009-10-3-r25
pubmed: 2690996
pmcid: 2690996
Larkin S, Ansorge O (2000) Development and microscopic anatomy of the pituitary gland. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland J, Kaltsas Get al (eds) Endotext. MDText.com, Inc
Law CW, Chen Y, Shi W, Smyth GK (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29. https://doi.org/10.1186/gb-2014-15-2-r29
doi: 10.1186/gb-2014-15-2-r29
pubmed: 24485249
pmcid: 4053721
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656
doi: 10.1093/bioinformatics/btt656
pubmed: 24227677
pmcid: 24227677
Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P (2015) The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425. https://doi.org/10.1016/j.cels.2015.12.004
doi: 10.1016/j.cels.2015.12.004
pubmed: 26771021
pmcid: 4707969
Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333. https://doi.org/10.1038/nrc3932
doi: 10.1038/nrc3932
pubmed: 25998712
pmcid: 4859809
Liu APY, Kelsey MM, Sabbaghian N, Park SH, Deal CL, Esbenshade AJ et al (2020) Clinical outcomes and complications of pituitary blastoma. J Clin Endocrinol Metab 106:351–363. https://doi.org/10.1210/clinem/dgaa857
doi: 10.1210/clinem/dgaa857
Lopes MBS (2017) The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol 134:521–535. https://doi.org/10.1007/s00401-017-1769-8
doi: 10.1007/s00401-017-1769-8
pubmed: 28821944
Mannelli M, Canu L, Ercolino T, Rapizzi E, Martinelli S, Parenti G et al (2018) Diagnosis of endocrine disease: SDHx mutations: beyond pheochromocytomas and paragangliomas. Eur J Endocrinol 178:R11–R17. https://doi.org/10.1530/EJE-17-0523
doi: 10.1530/EJE-17-0523
pubmed: 28924001
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10
doi: 10.14806/ej.17.1.200
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A et al (2016) The ensembl variant effect predictor. Genome Biol 17:122. https://doi.org/10.1186/s13059-016-0974-4
doi: 10.1186/s13059-016-0974-4
pubmed: 27268795
pmcid: 4893825
Mello BP, de Carvalho DD, Campos AH, Soares FA, Amarante-Mendes GP (2013) Regulation of TRAIL expression by PRAME and EZH2 as potential therapeutic target against solid tumors. BMC Proc 7:P10. https://doi.org/10.1186/1753-6561-7-s2-p10
doi: 10.1186/1753-6561-7-s2-p10
pmcid: 3624152
Moore KL (1977) Developing human: clinically oriented embryology. Saunders, Philadelphia
Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M (2004) The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 10:4307–4313. https://doi.org/10.1158/1078-0432.CCR-03-0813
doi: 10.1158/1078-0432.CCR-03-0813
pubmed: 15240516
Oehler VG, Guthrie KA, Cummings CL, Sabo K, Wood BL, Gooley T et al (2009) The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells. Blood 114:3299–3308. https://doi.org/10.1182/blood-2008-07-170282
doi: 10.1182/blood-2008-07-170282
pubmed: 19625708
pmcid: 2759652
Paila U, Chapman BA, Kirchner R, Quinlan AR (2013) GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comput Biol 9:e1003153. https://doi.org/10.1371/journal.pcbi.1003153
doi: 10.1371/journal.pcbi.1003153
pubmed: 23874191
pmcid: 3715403
Priest JR, Watterson J, Strong L, Huff V, Woods WG, Byrd RL et al (1996) Pleuropulmonary blastoma: a marker for familial disease. J Pediatr 128:220–224
doi: 10.1016/S0022-3476(96)70393-1
Pugh TJ, Yu W, Yang J, Field AL, Ambrogio L, Carter SL et al (2014) Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene 33:5295–5302. https://doi.org/10.1038/onc.2014.150
doi: 10.1038/onc.2014.150
pubmed: 24909177
pmcid: 4224628
Rakheja D, Chen KS, Liu Y, Shukla AA, Schmid V, Chang TC et al (2014) Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun 2:4802. https://doi.org/10.1038/ncomms5802
doi: 10.1038/ncomms5802
pubmed: 25190313
Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:i333–i339. https://doi.org/10.1093/bioinformatics/bts378
doi: 10.1093/bioinformatics/bts378
pubmed: 22962449
pmcid: 3436805
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007
doi: 10.1093/nar/gkv007
pubmed: 4402510
pmcid: 4402510
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616
doi: 10.1093/bioinformatics/btp616
pubmed: 19910308
pmcid: 19910308
Russell JP, Lodge EJ, Andoniadou CL (2018) Basic research advances on pituitary stem cell function and regulation. Neuroendocrinology 107:196–203. https://doi.org/10.1159/000488393
doi: 10.1159/000488393
pubmed: 29539624
Sahakitrungruang T, Srichomthong C, Pornkunwilai S, Amornfa J, Shuangshoti S, Kulawonganunchai S et al (2014) Germline and somatic DICER1 mutations in a pituitary blastoma causing infantile-onset Cushing’s disease. J Clin Endocrinol Metab 99:E1487-1492. https://doi.org/10.1210/jc.2014-1016
doi: 10.1210/jc.2014-1016
pubmed: 24823459
Scheithauer BW, Horvath E, Abel TW, Robital Y, Park SH, Osamura RY et al (2012) Pituitary blastoma: a unique embryonal tumor. Pituitary 15:365–373. https://doi.org/10.1007/s11102-011-0328-x
doi: 10.1007/s11102-011-0328-x
pubmed: 21805093
Scheithauer BW, Kovacs K, Horvath E, Kim DS, Osamura RY, Ketterling RP et al (2008) Pituitary blastoma. Acta Neuropathol 116:657–666. https://doi.org/10.1007/s00401-008-0388-9
doi: 10.1007/s00401-008-0388-9
pubmed: 18551299
pmcid: 18551299
Seki M, Yoshida K, Shiraishi Y, Shimamura T, Sato Y, Nishimura R et al (2014) Biallelic DICER1 mutations in sporadic pleuropulmonary blastoma. Cancer Res 74:2742–2749. https://doi.org/10.1158/0008-5472.CAN-13-2470
doi: 10.1158/0008-5472.CAN-13-2470
pubmed: 24675358
Srirangam Nadhamuni V, Korbonits M (2020) Novel insights into pituitary tumorigenesis: genetic and epigenetic mechanisms. Endocr Rev 41:821–846. https://doi.org/10.1210/endrev/bnaa006
doi: 10.1210/endrev/bnaa006
pmcid: 7441741
Tetreault M, Bareke E, Nadaf J, Alirezaie N, Majewski J (2015) Whole-exome sequencing as a diagnostic tool: current challenges and future opportunities. Expert Rev Mol Diagn 15:749–760. https://doi.org/10.1586/14737159.2015.1039516
doi: 10.1586/14737159.2015.1039516
pubmed: 25959410
Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017
doi: 10.1093/bib/bbs017
pubmed: 22517427
Wang Y, Chen J, Yang W, Mo F, Senz J, Yap D et al (2015) The oncogenic roles of DICER1 RNase IIIb domain mutations in ovarian Sertoli-Leydig cell tumors. Neoplasia 17:650–660. https://doi.org/10.1016/j.neo.2015.08.003
doi: 10.1016/j.neo.2015.08.003
pubmed: 26408257
pmcid: 4674484
Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 87:933–963. https://doi.org/10.1152/physrev.00006.2006
doi: 10.1152/physrev.00006.2006
pubmed: 17615393