Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the MiR156, MiR5488 and MiR399 are Involved in the Regulation of Male Sterility in PTGMS Rice.
MicroRNAs
PTGMS
degradome
male sterile
transcriptome
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
24 Feb 2021
24 Feb 2021
Historique:
received:
11
01
2021
revised:
19
02
2021
accepted:
20
02
2021
entrez:
6
3
2021
pubmed:
7
3
2021
medline:
30
4
2021
Statut:
epublish
Résumé
A photoperiod- and thermo-sensitive genic male sterile (PTGMS) line is the basic material for two-hybrid rice and is an important genetic breeding resource. Peiai64S (PA64S) is an important germplasm resource of PTGMS rice, and it has been applied to two-line hybrid rice systems in China. Pollen fertility in PA64S is regulated by the temperature and photoperiod, but the mechanism of the fertility transition is unclear. In this study, we obtained the male fertile plant PA64S(F) and the male sterile plant PA64S(S) by controlling different temperatures under long light conditions and used the male fertile and sterile plants to investigate the role of microRNAs (miRNAs) in regulating male fertility in rice. We performed the small RNA library sequencing of anthers from PA64S(S) and PA64S(F). A total of 196 miRNAs were identified-166 known miRNAs among 27 miRNA families and 30 novel miRNAs. In the transcriptome analysis, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes revealed significant enrichment in the synthesis and metabolism of fatty acids and some secondary metabolism pathways such as fatty acid metabolism and phenylalanine metabolism. With a comprehensive analysis of miRNA, transcriptome, and degradome sequencing, we identified that 13 pairs of miRNA/target genes regulated male fertility in rice by responding to temperature change, among which the miR156, miR5488, and miR399 affect the male fertility of PA64S by influencing SPLs, the lignin synthesis of anther walls, and the flavonoid metabolism pathway. The results provide a new understanding of PTGMS rice, which will help us better understand the potential regulatory mechanisms of male sterility in the future.
Identifiants
pubmed: 33668376
pii: ijms22052260
doi: 10.3390/ijms22052260
pmc: PMC7956645
pii:
doi:
Substances chimiques
MicroRNAs
0
Plant Proteins
0
RNA, Small Untranslated
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Key Research and Development Program of China
ID : 2016YFD0300207
Organisme : National Natural Science Foundation of China
ID : 31801294
Références
BMC Bioinformatics. 2012 Jun 21;13:140
pubmed: 22720726
Nucleic Acids Res. 2012 Jan;40(1):37-52
pubmed: 21911355
BMC Plant Biol. 2019 Dec 19;19(1):570
pubmed: 31856702
BMC Plant Biol. 2018 Oct 17;18(1):242
pubmed: 30332993
BMC Genomics. 2015 Oct 28;16:878
pubmed: 26511108
Plant J. 2017 Sep;91(6):977-994
pubmed: 28635129
Sci Rep. 2017 Mar 06;7:43397
pubmed: 28262713
PLoS One. 2015 May 15;10(5):e0127184
pubmed: 25978425
Bioinformatics. 2009 Jan 1;25(1):130-1
pubmed: 19017659
Plant Cell. 2010 Jan;22(1):91-107
pubmed: 20118226
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11934-9
pubmed: 16085708
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12614-12619
pubmed: 29109252
Genome Biol. 2009;10(3):R25
pubmed: 19261174
Plant Physiol. 2011 Oct;157(2):574-86
pubmed: 21807887
Theor Appl Genet. 1995 Nov;91(6-7):1111-4
pubmed: 24170005
Plant Cell. 2012 Aug;24(8):3320-32
pubmed: 22942378
Theor Appl Genet. 2011 Feb;122(2):365-72
pubmed: 20938764
Plant Cell. 2004;16 Suppl:S61-71
pubmed: 15084718
Funct Integr Genomics. 2018 Jul;18(4):457-476
pubmed: 29626311
J Cell Physiol. 2016 Feb;231(2):303-13
pubmed: 26248304
Plant Biotechnol J. 2016 Aug;14(8):1661-72
pubmed: 26806409
Annu Rev Plant Biol. 2006;57:19-53
pubmed: 16669754
Curr Biol. 2005 Nov 22;15(22):2038-43
pubmed: 16303564
J Agric Food Chem. 2015 Jun 10;63(22):5485-91
pubmed: 25997082
Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8675-9
pubmed: 7915844
Int J Mol Sci. 2020 Feb 14;21(4):
pubmed: 32074966
Plant Cell. 2011 Feb;23(2):431-42
pubmed: 21317375
Cell Res. 2012 Apr;22(4):649-60
pubmed: 22349461
Nucleic Acids Res. 2010 May;38(9):3081-93
pubmed: 20110261
Front Plant Sci. 2017 Aug 08;8:1370
pubmed: 28848574
Plant Physiol. 2016 Jun;171(2):944-59
pubmed: 27208307
Genomics Proteomics Bioinformatics. 2018 Dec;16(6):393-396
pubmed: 30553883
Plant Mol Biol. 2016 Sep;92(1-2):39-55
pubmed: 27325118
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):76-81
pubmed: 23256151
Nat Prod Rep. 2003 Feb;20(1):79-110
pubmed: 12636085
Plant J. 2015 Jul;83(2):300-11
pubmed: 26017690
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14145-14150
pubmed: 27864513
Plant Physiol. 2011 Jul;156(3):1101-15
pubmed: 21317339
BMC Genomics. 2018 May 8;19(1):333
pubmed: 29739311
Plant Physiol. 2006 Sep;142(1):280-93
pubmed: 16861571
Theor Appl Genet. 2005 Nov;111(7):1271-7
pubmed: 16133314
Curr Opin Plant Biol. 2014 Oct;21:59-66
pubmed: 25036899
Biochem Biophys Res Commun. 2020 Oct 29;532(1):1-10
pubmed: 32826059
Annu Rev Plant Biol. 2005;56:393-434
pubmed: 15862102
Plant Physiol. 1997 Jul;114(3):871-879
pubmed: 12223748
Plant Cell. 2010 Dec;22(12):3935-50
pubmed: 21177480
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W22-8
pubmed: 22693224
Plant Cell. 1997 Nov;9(11):1985-98
pubmed: 9401123
Eur J Cell Biol. 2010 Feb-Mar;89(2-3):250-7
pubmed: 20031253
Plant Mol Biol. 2012 Sep;80(1):3-16
pubmed: 21996939
J Cell Physiol. 2015 Jan;230(1):1-15
pubmed: 24909308
Annu Rev Plant Biol. 2014;65:579-606
pubmed: 24313845
Mol Plant. 2020 Nov 2;13(11):1644-1653
pubmed: 32810599
Nature. 2016 Sep 29;537(7622):629-633
pubmed: 27602511
Nat Plants. 2018 Jul;4(7):495-504
pubmed: 29915329
Annu Rev Plant Biol. 2013;64:137-59
pubmed: 23330790
Plant J. 2015 Aug;83(4):673-85
pubmed: 26096676
J Exp Bot. 2018 May 25;69(12):2979-2993
pubmed: 29659948
Front Plant Sci. 2016 Apr 20;7:514
pubmed: 27148335
Theor Appl Genet. 2021 Feb;134(2):453-471
pubmed: 33089345
Plant Biotechnol J. 2016 Aug;14(8):1727-46
pubmed: 26857916
New Phytol. 2016 Jul;211(2):502-15
pubmed: 26990325
J Exp Bot. 2011 Mar;62(5):1633-49
pubmed: 21325605
Plant Physiol. 2019 Jun;180(2):986-997
pubmed: 30967482
Plant Cell. 2011 Apr;23(4):1512-22
pubmed: 21487097
Dev Cell. 2009 Aug;17(2):268-78
pubmed: 19686687
Nat Biotechnol. 1999 Aug;17(8):808-12
pubmed: 10429249
Plant Sci. 2020 Oct;299:110581
pubmed: 32900435
Plant J. 2014 Dec;80(6):1108-17
pubmed: 25345491
BMC Plant Biol. 2012 Jul 28;12:120
pubmed: 22838835
BMC Plant Biol. 2020 May 13;20(1):215
pubmed: 32404101
Plant Physiol. 2018 Aug;177(4):1743-1753
pubmed: 29967097
Plant Physiol. 2020 Aug;183(4):1681-1695
pubmed: 32513835
J Exp Bot. 2014 Jan;65(1):89-101
pubmed: 24336445
Int J Mol Sci. 2019 Dec 06;20(24):
pubmed: 31817723
Front Plant Sci. 2017 Jan 19;8:10
pubmed: 28154572
Front Plant Sci. 2016 Jul 22;7:1054
pubmed: 27499756
Cell. 2009 Aug 21;138(4):750-9
pubmed: 19703400
Food Chem. 2015 May 1;174:319-25
pubmed: 25529687
Int J Mol Sci. 2019 Oct 09;20(20):
pubmed: 31601032