Dual modes of CRISPR-associated transposon homing.
Bacteria
/ genetics
Bacterial Proteins
/ genetics
CRISPR-Associated Proteins
/ genetics
CRISPR-Cas Systems
Clustered Regularly Interspaced Short Palindromic Repeats
DNA Transposable Elements
/ physiology
DNA, Bacterial
/ genetics
Gene Editing
RNA, Guide, Kinetoplastida
Recombination, Genetic
Transposases
/ genetics
CRISPR, CRISPR-associated transposases, CAST, RNA-guided DNA transposition, homing transposition, Type V-K Cas12k effector, Type I-B Cascade effector, Tn7, TnsD/TniQ, transposon target selectors
Journal
Cell
ISSN: 1097-4172
Titre abrégé: Cell
Pays: United States
ID NLM: 0413066
Informations de publication
Date de publication:
29 04 2021
29 04 2021
Historique:
received:
04
11
2020
revised:
25
01
2021
accepted:
02
03
2021
pubmed:
27
3
2021
medline:
21
10
2021
entrez:
26
3
2021
Statut:
ppublish
Résumé
Tn7-like transposons have co-opted CRISPR systems, including class 1 type I-F, I-B, and class 2 type V-K. Intriguingly, although these CRISPR-associated transposases (CASTs) undergo robust CRISPR RNA (crRNA)-guided transposition, they are almost never found in sites targeted by the crRNAs encoded by the cognate CRISPR array. To understand this paradox, we investigated CAST V-K and I-B systems and found two distinct modes of transposition: (1) crRNA-guided transposition and (2) CRISPR array-independent homing. We show distinct CAST systems utilize different molecular mechanisms to target their homing site. Type V-K CAST systems use a short, delocalized crRNA for RNA-guided homing, whereas type I-B CAST systems, which contain two distinct target selector proteins, use TniQ for RNA-guided DNA transposition and TnsD for homing to an attachment site. These observations illuminate a key step in the life cycle of CAST systems and highlight the diversity of molecular mechanisms mediating transposon homing.
Identifiants
pubmed: 33770501
pii: S0092-8674(21)00291-9
doi: 10.1016/j.cell.2021.03.006
pmc: PMC8276595
mid: NIHMS1716197
pii:
doi:
Substances chimiques
Bacterial Proteins
0
CRISPR-Associated Proteins
0
DNA Transposable Elements
0
DNA, Bacterial
0
RNA, Guide
0
Transposases
EC 2.7.7.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2441-2453.e18Subventions
Organisme : NHLBI NIH HHS
ID : DP1 HL141201
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG009761
Pays : United States
Organisme : NHGRI NIH HHS
ID : RM1 HG006193
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2021 Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The Broad Institute has filed patent applications related to this work. F.Z. is a scientific advisor and cofounder of Editas Medicine, Beam Therapeutics, Pairwise Plants, Arbor Biotechnologies, and Sherlock Biosciences.
Références
Nat Biotechnol. 2017 Nov;35(11):1026-1028
pubmed: 29035372
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7358-E7366
pubmed: 28811374
Cell. 2020 Dec 23;183(7):1757-1771.e18
pubmed: 33271061
Nucleic Acids Res. 2003 Jan 1;31(1):439-41
pubmed: 12520045
Mol Cell. 2020 May 21;78(4):794-800.e8
pubmed: 32187529
Methods Mol Biol. 2016;1399:207-33
pubmed: 26791506
Cell Mol Life Sci. 1997 Aug;53(8):621-45
pubmed: 9351466
Nat Rev Microbiol. 2019 Aug;17(8):513-525
pubmed: 31165781
Methods Mol Biol. 2019;1962:1-14
pubmed: 31020551
Nat Microbiol. 2017 Jun 05;2:17092
pubmed: 28581505
J Mol Biol. 2019 Jan 4;431(1):3-20
pubmed: 30193985
PLoS Comput Biol. 2013 Oct;9(10):e1003280
pubmed: 24204229
Science. 2016 Aug 5;353(6299):aad5147
pubmed: 27493190
Genes Dev. 2001 Mar 15;15(6):737-47
pubmed: 11274058
Nature. 2015 Oct 1;526(7571):55-61
pubmed: 26432244
Nat Biotechnol. 2021 Apr;39(4):480-489
pubmed: 33230293
Mob DNA. 2010 Jul 23;1(1):18
pubmed: 20653944
Genome Inform. 2009 Oct;23(1):205-11
pubmed: 20180275
Cell. 1991 May 31;65(5):805-16
pubmed: 1645619
Nature. 2020 Jan;577(7789):271-274
pubmed: 31853065
Science. 2019 Jul 5;365(6448):48-53
pubmed: 31171706
Proc Natl Acad Sci U S A. 1989 Jun;86(11):3958-62
pubmed: 2542960
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
Bioinformatics. 2007 Jan 1;23(1):127-8
pubmed: 17050570
Mol Microbiol. 2019 Dec;112(6):1635-1644
pubmed: 31502713
Nat Rev Microbiol. 2020 Feb;18(2):67-83
pubmed: 31857715
Bioinformatics. 2013 Jul 15;29(14):1726-33
pubmed: 23677940
Science. 2020 Jun 5;368(6495):
pubmed: 32499411
BMC Bioinformatics. 2010 Mar 08;11:119
pubmed: 20211023
Nature. 2019 Jul;571(7764):219-225
pubmed: 31189177
Genes Dev. 1988 Feb;2(2):137-49
pubmed: 2834269
Bioinformatics. 2013 Nov 15;29(22):2933-5
pubmed: 24008419
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Nucleic Acids Res. 2005 Jan 20;33(2):511-8
pubmed: 15661851
Mol Biol Evol. 2009 Jul;26(7):1641-50
pubmed: 19377059