Conformationally flexible core-bearing detergents with a hydrophobic or hydrophilic pendant: Effect of pendant polarity on detergent conformation and membrane protein stability.


Journal

Acta biomaterialia
ISSN: 1878-7568
Titre abrégé: Acta Biomater
Pays: England
ID NLM: 101233144

Informations de publication

Date de publication:
01 07 2021
Historique:
received: 18 01 2021
revised: 31 03 2021
accepted: 21 04 2021
pubmed: 3 5 2021
medline: 3 8 2021
entrez: 2 5 2021
Statut: ppublish

Résumé

Membrane protein structures provide atomic level insight into essential biochemical processes and facilitate protein structure-based drug design. However, the inherent instability of these bio-macromolecules outside lipid bilayers hampers their structural and functional study. Detergent micelles can be used to solubilize and stabilize these membrane-inserted proteins in aqueous solution, thereby enabling their downstream characterizations. Membrane proteins encapsulated in detergent micelles tend to denature and aggregate over time, highlighting the need for development of new amphiphiles effective for protein solubility and stability. In this work, we present newly-designed maltoside detergents containing a pendant chain attached to a glycerol-decorated tris(hydroxymethyl)methane (THM) core, designated GTMs. One set of the GTMs has a hydrophobic pendant (ethyl chain; E-GTMs), and the other set has a hydrophilic pendant (methoxyethoxylmethyl chain; M-GTMs) placed in the hydrophobic-hydrophilic interfaces. The two sets of GTMs displayed profoundly different behaviors in terms of detergent self-assembly and protein stabilization efficacy. These behaviors mainly arise from the polarity difference between two pendants (ethyl and methoxyethoxylmethyl chains) that results in a large variation in detergent conformation between these sets of GTMs in aqueous media. The resulting high hydrophobic density in the detergent micelle interior is likely responsible for enhanced efficacy of the M-GTMs for protein stabilization compared to the E-GTMs and a gold standard detergent DDM. A representative GTM, M-GTM-O12, was more effective for protein stability than some recently developed detergents including LMNG. This is the first case study investigating the effect of pendant polarity on detergent geometry correlated with detergent efficacy for protein stabilization. STATEMENT OF SIGNIFICANCE: This study introduces new amphiphiles for use as biochemical tools in membrane protein studies. We identified a few hydrophilic pendant-bearing amphiphiles such as M-GTM-O11 and M-GTM-O12 that show remarkable efficacy for membrane protein solubilization and stabilization compared to a gold standard DDM, the hydrophobic counterparts (E-GTMs) and a significantly optimized detergent LMNG. In addition, detergent results obtained in the current study reveals the effect of detergent pendant polarity on protein solubility and stability. Thus, the current study represents both significant chemical and conceptual advance. The detergent tools and design principle introduced here advance protein science and facilitate structure-based drug design and development.

Identifiants

pubmed: 33933694
pii: S1742-7061(21)00287-7
doi: 10.1016/j.actbio.2021.04.043
pmc: PMC8222176
mid: NIHMS1700318
pii:
doi:

Substances chimiques

Detergents 0
Membrane Proteins 0
Micelles 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

393-407

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM122759
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS105863
Pays : United States

Informations de copyright

Copyright © 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Nat Rev Drug Discov. 2011 Jan;10(1):47-60
pubmed: 21193867
Acta Biomater. 2020 Aug;112:250-261
pubmed: 32522715
J Biol Chem. 1998 Dec 11;273(50):33198-202
pubmed: 9837888
Chemistry. 2018 Jul 11;24(39):9860-9868
pubmed: 29741269
Chemistry. 2012 Jul 27;18(31):9485-90
pubmed: 22730191
Nature. 2018 Jun;558(7711):547-552
pubmed: 29899455
Annu Rev Physiol. 2004;66:1-27
pubmed: 14977394
Biochemistry. 2012 Feb 21;51(7):1416-30
pubmed: 22304405
Nature. 2011 Jan 13;469(7329):236-40
pubmed: 21228876
J Am Chem Soc. 2017 Mar 1;139(8):3072-3081
pubmed: 28218862
J Gen Physiol. 2017 Nov 6;149(11):1029-1039
pubmed: 29054867
J Am Chem Soc. 2019 Dec 18;141(50):19677-19687
pubmed: 31809039
Protein Sci. 2014 Jun;23(6):769-89
pubmed: 24652590
Org Biomol Chem. 2019 Mar 20;17(12):3249-3257
pubmed: 30843907
J Chem Inf Model. 2013 Aug 26;53(8):2171-80
pubmed: 23865552
Anal Biochem. 1995 Oct 10;231(1):269-71
pubmed: 8678314
Chemistry. 2019 Sep 2;25(49):11545-11554
pubmed: 31243822
Curr Protein Pept Sci. 2010 Mar;11(2):156-65
pubmed: 20088775
J Biol Chem. 2015 Oct 30;290(44):26725-38
pubmed: 26363074
J Am Chem Soc. 2016 Mar 23;138(11):3789-96
pubmed: 26966956
Chem Sci. 2016 Mar 1;7(3):1933-1939
pubmed: 27110345
J Chem Theory Comput. 2016 Jan 12;12(1):405-13
pubmed: 26631602
Chembiochem. 2016 Dec 14;17(24):2334-2339
pubmed: 27981750
J Chem Theory Comput. 2009 Aug 20;5(9):2353-2370
pubmed: 20161005
Nature. 2012 Mar 21;485(7398):321-6
pubmed: 22437502
Nat Commun. 2020 Jan 28;11(1):564
pubmed: 31992701
Nat Methods. 2016 Apr;13(4):345-51
pubmed: 26950744
J Phys Chem B. 2018 Jul 5;122(26):6744-6754
pubmed: 29870257
J Comput Chem. 2008 Aug;29(11):1859-65
pubmed: 18351591
Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):877-82
pubmed: 18192400
ACS Chem Biol. 2019 Aug 16;14(8):1717-1726
pubmed: 31305987
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3603-8
pubmed: 17360689
Biophys J. 2005 Jul;89(1):452-64
pubmed: 15849244
Science. 2007 Nov 23;318(5854):1266-73
pubmed: 17962519
PLoS One. 2013 May 08;8(5):e62488
pubmed: 23667481
PLoS One. 2011 Mar 31;6(3):e18036
pubmed: 21483854
Annu Rev Biophys Biomol Struct. 2004;33:25-51
pubmed: 15139803
Nat Biotechnol. 2003 Feb;21(2):171-6
pubmed: 12524549
Annu Rev Biochem. 2011;80:247-71
pubmed: 21548785
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659
pubmed: 28746339
Chem Commun (Camb). 2013 Mar 21;49(23):2287-9
pubmed: 23165475
Methods. 2011 Dec;55(4):318-23
pubmed: 21958988
Nat Struct Mol Biol. 2016 Jun;23(6):481-6
pubmed: 27273631
Methods. 2007 Apr;41(4):388-97
pubmed: 17367711
Nat Methods. 2010 Dec;7(12):1003-8
pubmed: 21037590
Methods. 2011 Dec;55(4):337-41
pubmed: 21982781
Biochemistry. 2010 Nov 9;49(44):9572-83
pubmed: 20919740
Nat Commun. 2014;5:3009
pubmed: 24389923
Protein Sci. 2008 Mar;17(3):466-72
pubmed: 18218713
J Phys Chem B. 2010 Jun 17;114(23):7830-43
pubmed: 20496934
Protein Sci. 2012 Sep;21(9):1358-65
pubmed: 22811290
Biochemistry. 2015 Sep 29;54(38):5849-55
pubmed: 26352464
J Chem Theory Comput. 2011 Oct 11;7(10):3162-3180
pubmed: 22125473
Protein Sci. 1998 Apr;7(4):1029-38
pubmed: 9568909
Eur Biophys J. 2016 Jan;45(1):3-21
pubmed: 26639665
Anal Biochem. 1984 Jun;139(2):408-12
pubmed: 6476378
Structure. 2011 Nov 9;19(11):1683-90
pubmed: 22078567
Chem Sci. 2017 Dec 1;8(12):8315-8324
pubmed: 29619178
Exp Mol Pathol. 2009 Jun;86(3):141-50
pubmed: 19454265
Mol Immunol. 1979 Apr;16(4):265-7
pubmed: 492165
J Biol Chem. 1998 Dec 11;273(50):33192-7
pubmed: 9837887
Biochim Biophys Acta Gen Subj. 2019 Feb;1863(2):437-455
pubmed: 30419284
Chemistry. 2017 May 17;23(28):6724-6729
pubmed: 28303608
Nature. 2013 Oct 24;502(7472):575-579
pubmed: 24056936
J Biol Chem. 2011 Feb 25;286(8):6367-74
pubmed: 21148559
Nature. 1998 Mar 26;392(6674):353-8
pubmed: 9537320
J Comput Chem. 2014 Oct 15;35(27):1997-2004
pubmed: 25130509
Nature. 1985 Dec 19-1986 Jan 1;318(6047):618-24
pubmed: 22439175
Science. 2017 Nov 17;358(6365):936-940
pubmed: 29074581
Nat Chem Biol. 2006 Aug;2(8):417-22
pubmed: 16799554
Proc Natl Acad Sci U S A. 1974 Apr;71(4):1461-5
pubmed: 4598306
Nat Methods. 2019 May;16(5):417-420
pubmed: 30988469

Auteurs

Aiman Sadaf (A)

Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea.

Seonghoon Kim (S)

School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, South Korea.

Hyoung Eun Bae (HE)

Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea.

Haoqing Wang (H)

Department of Molecular and Cellular Physiology, Stanford University, California 94305, USA.

Andreas Nygaard (A)

Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark.

Yuki Uegaki (Y)

Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.

Yang Du (Y)

Department of Molecular and Cellular Physiology, Stanford University, California 94305, USA.

Chastine F Munk (CF)

Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark.

Satoshi Katsube (S)

Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.

Hyun Sung Lee (H)

Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea.

Jungnam Bae (J)

Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea.

Chul Won Choi (CW)

Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea.

Hee-Jung Choi (HJ)

Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea.

Bernadette Byrne (B)

Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.

Samuel H Gellman (SH)

Department of Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA.

Lan Guan (L)

Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.

Claus J Loland (CJ)

Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark.

Brian K Kobilka (BK)

Department of Molecular and Cellular Physiology, Stanford University, California 94305, USA.

Wonpil Im (W)

Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA.

Pil Seok Chae (PS)

Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, South Korea. Electronic address: pchae@hanyang.ac.kr.

Articles similaires

Humans Stomach Neoplasms Macrophages Tumor Microenvironment Disease Progression
Animals Humans TOR Serine-Threonine Kinases Lupus Erythematosus, Systemic Arthritis, Rheumatoid

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals
1.00
Animals Inflammation Mice Membrane Proteins Humans

Classifications MeSH