Retinoic acid signaling is critical during the totipotency window in early mammalian development.
Acitretin
/ pharmacology
Animals
Blastocyst Inner Cell Mass
/ cytology
Cell Differentiation
Cells, Cultured
Dose-Response Relationship, Drug
Embryonic Stem Cells
/ cytology
Female
Gene Expression Regulation, Developmental
Gene Regulatory Networks
/ genetics
Genes, Reporter
Isotretinoin
/ pharmacology
Male
Mice
/ embryology
Mice, Inbred C57BL
Mice, Inbred CBA
Piperazines
/ pharmacology
Pyrazoles
/ pharmacology
RNA Interference
RNA, Messenger
/ biosynthesis
RNA, Small Interfering
/ pharmacology
RNA-Seq
Receptors, Retinoic Acid
/ antagonists & inhibitors
Signal Transduction
/ drug effects
Totipotent Stem Cells
/ cytology
Transcription, Genetic
Tretinoin
/ antagonists & inhibitors
Retinoic Acid Receptor gamma
Journal
Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
received:
05
06
2020
accepted:
07
04
2021
pubmed:
29
5
2021
medline:
25
8
2021
entrez:
28
5
2021
Statut:
ppublish
Résumé
Totipotent cells hold enormous potential for regenerative medicine. Thus, the development of cellular models recapitulating totipotent-like features is of paramount importance. Cells resembling the totipotent cells of early embryos arise spontaneously in mouse embryonic stem (ES) cell cultures. Such '2-cell-like-cells' (2CLCs) recapitulate 2-cell-stage features and display expanded cell potential. Here, we used 2CLCs to perform a small-molecule screen to identify new pathways regulating the 2-cell-stage program. We identified retinoids as robust inducers of 2CLCs and the retinoic acid (RA)-signaling pathway as a key component of the regulatory circuitry of totipotent cells in embryos. Using single-cell RNA-seq, we reveal the transcriptional dynamics of 2CLC reprogramming and show that ES cells undergo distinct cellular trajectories in response to RA. Importantly, endogenous RA activity in early embryos is essential for zygotic genome activation and developmental progression. Overall, our data shed light on the gene regulatory networks controlling cellular plasticity and the totipotency program.
Identifiants
pubmed: 34045724
doi: 10.1038/s41594-021-00590-w
pii: 10.1038/s41594-021-00590-w
pmc: PMC8195742
doi:
Substances chimiques
LY2955303
0
Piperazines
0
Pyrazoles
0
RNA, Messenger
0
RNA, Small Interfering
0
Receptors, Retinoic Acid
0
retinoic acid binding protein I, cellular
0
Tretinoin
5688UTC01R
Isotretinoin
EH28UP18IF
Acitretin
LCH760E9T7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
521-532Commentaires et corrections
Type : ErratumIn
Références
Ishiuchi, T. & Torres-Padilla, M.-E. Towards an understanding of the regulatory mechanisms of totipotency. Curr. Opin. Genet. Dev. 23, 512–518 (2013).
pubmed: 23942314
doi: 10.1016/j.gde.2013.06.006
Wu, G. & Schöler, H. R. Lineage segregation in the totipotent embryo. Curr. Top. Dev. Biol. 117, 301–317 (2016).
pubmed: 26969985
doi: 10.1016/bs.ctdb.2015.10.014
Tarkowski, A. K. Experiments on the development of isolated blastomeres of mouse eggs. Nature 184, 1286–1287 (1959).
pubmed: 13836947
doi: 10.1038/1841286a0
Togashi, M. Production of monozygotic twins by splitting of 2-cell stage embryos in mice. Jpn J. Anim. Reprod. 33, 51–57 (1987).
doi: 10.1262/jrd1977.33.51
Sotomaru, Y., Kato, Y. & Tsunoda, Y. Production of monozygotic twins after freezing and thawing of bisected mouse embryos. Cryobiology 37, 139–145 (1998).
pubmed: 9769164
doi: 10.1006/cryo.1998.2111
Rossant, J. & Tam, P. P. L. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713 (2009).
pubmed: 19201946
doi: 10.1242/dev.017178
Shahbazi, M. N. & Zernicka-Goetz, M. Deconstructing and reconstructing the mouse and human early embryo. Nat. Cell Biol. 20, 878–887 (2018).
pubmed: 30038253
doi: 10.1038/s41556-018-0144-x
Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).
pubmed: 22722858
pmcid: 3395470
doi: 10.1038/nature11244
Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017).
pubmed: 28459457
pmcid: 5703070
doi: 10.1038/ng.3844
Rodriguez-Terrones, D. et al. A molecular roadmap for the emergence of early-embryonic-like cells in culture. Nat. Genet. 50, 106–119 (2018).
pubmed: 29255263
doi: 10.1038/s41588-017-0016-5
Cerulo, L. et al. Identification of a novel gene signature of ES cells self-renewal fluctuation through system-wide analysis. PloS ONE 9, e83235 (2014).
pubmed: 24392082
pmcid: 3879232
doi: 10.1371/journal.pone.0083235
Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).
pubmed: 15469847
doi: 10.1016/j.devcel.2004.09.004
Bošković, A. et al. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 28, 1042–1047 (2014).
pubmed: 24831699
pmcid: 4035533
doi: 10.1101/gad.238881.114
Rodriguez-Terrones, D. et al. A distinct metabolic state arises during the emergence of 2-cell-like cells. EMBO Rep. 21, e48354 (2020).
pubmed: 31849178
doi: 10.15252/embr.201948354
Tagliaferri, D. et al. Retinoic acid induces embryonic stem cells (ESCs) transition to 2 cell-like state through a coordinated expression of Dux and Duxbl1. Front. Cell Dev. Biol. 7, 385 (2019).
pubmed: 32010697
doi: 10.3389/fcell.2019.00385
Ishiuchi, T. et al. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671 (2015).
pubmed: 26237512
doi: 10.1038/nsmb.3066
De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941–945 (2017).
pubmed: 28459456
pmcid: 5446900
doi: 10.1038/ng.3858
De Iaco, A., Coudray, A., Duc, J. & Trono, D. DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells. EMBO Rep. 20, e47382 (2019).
pubmed: 30948459
pmcid: 6500978
Eckersley-Maslin, M. et al. Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program. Genes Dev. 33, 194–208 (2019).
pubmed: 30692203
pmcid: 6362816
doi: 10.1101/gad.321174.118
Choi, Y. J. et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science 355, eaag1927 (2017).
pubmed: 28082412
pmcid: 6138252
doi: 10.1126/science.aag1927
Yang, F. et al. DUX-miR-344-ZMYM2-mediated activation of MERVL LTRs induces a totipotent 2C-like state. Cell Stem Cell 26, 234–250 (2020).
pubmed: 32032525
pmcid: 8074926
doi: 10.1016/j.stem.2020.01.004
Rhinn, M. & Dollé, P. Retinoic acid signalling during development. Development 139, 843–858 (2012).
pubmed: 22318625
doi: 10.1242/dev.065938
Cunningham, T. J. & Duester, G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat. Rev. Mol. Cell Biol. 16, 110–123 (2015).
pubmed: 25560970
pmcid: 4636111
doi: 10.1038/nrm3932
Napoli, J. L. in The Biochemistry of Retinoid Signaling II: The Physiology of Vitamin A—Uptake, Transport, Metabolism and Signaling (eds Asson-Batres, M. A. & Rochette-Egly, C.) 21–76 (Springer, 2016).
Benbrook, D. M., Chambon, P., Rochette-Egly, C. & Asson-Batres, M. A. in The Biochemistry of Retinoic Acid Receptors I: Structure, Activation and Function at the Molecular Level (eds Asson-Batres, M. A. & Rochette-Egly, C.) 1–20 (Springer, 2014).
Lee, S. & Privalsky, M. L. Heterodimers of retinoic acid receptors and thyroid hormone receptors display unique combinatorial regulatory properties. Mol. Endocrinol. 19, 863–878 (2005).
pubmed: 15650024
doi: 10.1210/me.2004-0210
Agarwal, C., Chandraratna, R. A., Johnson, A. T., Rorke, E. A. & Eckert, R. L. AGN193109 is a highly effective antagonist of retinoid action in human ectocervical epithelial cells. J. Biol. Chem. 271, 12209–12212 (1996).
pubmed: 8647816
doi: 10.1074/jbc.271.21.12209
Germain, P. et al. Differential action on coregulator interaction defines inverse retinoid agonists and neutral antagonists. Chem. Biol. 16, 479–489 (2009).
pubmed: 19477412
doi: 10.1016/j.chembiol.2009.03.008
Monaghan, J. R. & Maden, M. Visualization of retinoic acid signaling in transgenic axolotls during limb development and regeneration. Dev. Biol. 368, 63–75 (2012).
pubmed: 22627291
pmcid: 3383931
doi: 10.1016/j.ydbio.2012.05.015
Eckersley-Maslin, M. A. et al. MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs. Cell Rep. 17, 179–192 (2016).
pubmed: 27681430
pmcid: 5055476
doi: 10.1016/j.celrep.2016.08.087
Fraichard, A. et al. In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181–3188 (1995).
pubmed: 7593279
doi: 10.1242/jcs.108.10.3181
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
pubmed: 30089906
pmcid: 6130801
doi: 10.1038/s41586-018-0414-6
Kalmar, T. et al. Regulated fluctuations in Nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 7, e1000149 (2009).
pubmed: 19582141
pmcid: 2700273
doi: 10.1371/journal.pbio.1000149
Osorno, R. & Chambers, I. Transcription factor heterogeneity and epiblast pluripotency. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2230–2237 (2011).
pubmed: 21727128
pmcid: 3130424
doi: 10.1098/rstb.2011.0043
Mark, M., Ghyselinck, N. B. & Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl. Recept. Signal. 7, e002 (2009).
pubmed: 19381305
pmcid: 2670431
doi: 10.1621/nrs.07002
Ulven, S. M. et al. Identification of endogenous retinoids, enzymes, binding proteins and receptors during early postimplantation development in mouse: important role of retinal dehydrogenase type 2 in synthesis of all-trans-retinoic acid. Dev. Biol. 220, 379–391 (2000).
pubmed: 10753524
doi: 10.1006/dbio.2000.9634
Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016).
pubmed: 27309802
doi: 10.1038/nature18606
Iqbal, K. et al. Cytoplasmic injection of circular plasmids allows targeted expression in mammalian embryos. BioTechniques 47, 959–968 (2009).
pubmed: 20041849
doi: 10.2144/000113270
Warner, C. M. & Versteegh, L. R. In vivo and in vitro effect of α-amanitin on preimplantation mouse embryo RNA polymerase. Nature 248, 678–680 (1974).
pubmed: 4833268
doi: 10.1038/248678a0
Picelli, S. et al. Smart-Seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).
pubmed: 24056875
doi: 10.1038/nmeth.2639
Whiddon, J. L., Langford, A. T., Wong, C.-J., Zhong, J. W. & Tapscott, S. J. Conservation and innovation in the DUX4-family gene network. Nat. Genet. 49, 935–940 (2017).
pubmed: 28459454
pmcid: 5446306
doi: 10.1038/ng.3846
Yan, Y.-L. et al. DPPA2/4 and SUMO E3 ligase PIAS4 opposingly regulate zygotic transcriptional program. PLoS Biol. 17, e3000324 (2019).
pubmed: 31226106
pmcid: 6608977
doi: 10.1371/journal.pbio.3000324
Tagliaferri, D. et al. Retinoic acid specifically enhances embryonic stem cell metastate marked by Zscan4. PloS ONE 11, e0147683 (2016).
pubmed: 26840068
pmcid: 4740454
doi: 10.1371/journal.pone.0147683
Penvose, A., Keenan, J. L., Bray, D., Ramlall, V. & Siggers, T. Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nat. Commun. 10, 2514 (2019).
pubmed: 31175293
pmcid: 6555819
doi: 10.1038/s41467-019-10264-3
Watson, L. C. et al. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat. Struct. Mol. Biol. 20, 876–883 (2013).
pubmed: 23728292
pmcid: 3702670
doi: 10.1038/nsmb.2595
Giguère, V. Orphan nuclear receptors: from gene to function. Endocr. Rev. 20, 689–725 (1999).
pubmed: 10529899
Chatagnon, A. et al. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements. Nucleic Acids Res. 43, 4833–4854 (2015).
pubmed: 25897113
pmcid: 4446430
doi: 10.1093/nar/gkv370
Wu, J. et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256–260 (2018).
pubmed: 29720659
doi: 10.1038/s41586-018-0080-8
Lohnes, D. et al. Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development 120, 2723–2748 (1994).
pubmed: 7607067
doi: 10.1242/dev.120.10.2723
Mendelsohn, C. et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771 (1994).
pubmed: 7607068
doi: 10.1242/dev.120.10.2749
Lohnes, D. et al. Function of retinoic acid receptor γ in the mouse. Cell 73, 643–658 (1993).
pubmed: 8388780
doi: 10.1016/0092-8674(93)90246-M
Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).
pubmed: 24408435
doi: 10.1126/science.1245316
Hogan, B., Beddington, R. & Costantini, F. (eds) Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1994).
Torres-Padilla, M. E. & Zernicka-Goetz, M. Role of TIF1α as a modulator of embryonic transcription in the mouse zygote. J. Cell Biol. 174, 329–338 (2006).
pubmed: 16880268
pmcid: 2064229
doi: 10.1083/jcb.200603146
Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00870-2 (2021).
Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).
pubmed: 30902100
pmcid: 6431044
doi: 10.1186/s13059-019-1662-y
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532
pmcid: 5802054
doi: 10.1186/s13059-017-1382-0
Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016).
pubmed: 27909575
pmcid: 5112579
Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).
pubmed: 29608177
pmcid: 6152897
doi: 10.1038/nbt.4091
McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. Preprint at https://arxiv.org/pdf/1802.03426.pdf (2018).
Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989–2998 (2015).
pubmed: 26002886
doi: 10.1093/bioinformatics/btv325
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
pubmed: 30089906
pmcid: 6130801
doi: 10.1038/s41586-018-0414-6
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
pubmed: 32747759
doi: 10.1038/s41587-020-0591-3
Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).
pubmed: 29914354
pmcid: 6007078
doi: 10.1186/s12864-018-4772-0
Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).
pubmed: 26668002
doi: 10.1093/bioinformatics/btv715
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
pubmed: 31178118
pmcid: 6687398
doi: 10.1016/j.cell.2019.05.031
Van den Berge, K. et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat. Commun. 11, 1201 (2020).
pubmed: 32139671
pmcid: 7058077
doi: 10.1038/s41467-020-14766-3
Park, S.-J. et al. Inferring the choreography of parental genomes during fertilization from ultralarge-scale whole-transcriptome analysis. Genes Dev. 27, 2736–2748 (2013).
pubmed: 24352427
pmcid: 3877761
doi: 10.1101/gad.227926.113