SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system.
Archaeal Proteins
/ chemistry
Bacterial Proteins
/ chemistry
Cell Cycle
Cell Division
/ genetics
Conserved Sequence
Crystallography, X-Ray
Evolution, Molecular
Methanobrevibacter
/ genetics
Microscopy, Electron, Transmission
Models, Molecular
Phylogeny
Protein Binding
Protein Interaction Domains and Motifs
Protein Structure, Quaternary
Recombinant Proteins
/ genetics
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
04 06 2021
04 06 2021
Historique:
received:
03
12
2020
accepted:
15
04
2021
entrez:
5
6
2021
pubmed:
6
6
2021
medline:
11
6
2021
Statut:
epublish
Résumé
Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZ
Identifiants
pubmed: 34088904
doi: 10.1038/s41467-021-23099-8
pii: 10.1038/s41467-021-23099-8
pmc: PMC8178401
doi:
Substances chimiques
Archaeal Proteins
0
Bacterial Proteins
0
FtsZ protein, Methanococcus jannaschii
0
Recombinant Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3214Références
J Bacteriol. 2017 Jan 12;199(3):
pubmed: 27872183
Science. 2017 Aug 11;357(6351):
pubmed: 28798101
J Mol Biol. 2000 Sep 8;302(1):205-17
pubmed: 10964570
Nat Commun. 2020 Apr 2;11(1):1641
pubmed: 32242019
Molecules. 2019 Dec 05;24(24):
pubmed: 31817305
Nat Rev Microbiol. 2010 Oct;8(10):731-41
pubmed: 20818414
Gene. 1998 Nov 5;222(1):99-106
pubmed: 9813262
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259
pubmed: 30931475
Nat Rev Microbiol. 2020 Nov;18(11):622-636
pubmed: 32690877
Archaea. 2010 Nov 11;2010:480492
pubmed: 21113291
Mol Microbiol. 1996 Jul;21(2):313-9
pubmed: 8858586
Cell. 2013 Feb 28;152(5):942-4
pubmed: 23452845
Mol Microbiol. 2006 Jun;60(6):1364-80
pubmed: 16796675
PLoS One. 2014 Oct 17;9(10):e110726
pubmed: 25330359
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42
pubmed: 21460441
J Mol Biol. 2018 Jul 20;430(15):2237-2243
pubmed: 29258817
Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268
pubmed: 31777944
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Science. 2008 Dec 12;322(5908):1710-3
pubmed: 19008417
Biol Direct. 2010 May 07;5:33
pubmed: 20459678
Mol Microbiol. 2015 Aug;97(3):560-76
pubmed: 25943244
Subcell Biochem. 2017;84:357-377
pubmed: 28500532
Nature. 2015 Mar 19;519(7543):362-5
pubmed: 25533961
Nat Microbiol. 2020 Jul;5(7):887-900
pubmed: 32367054
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18942-6
pubmed: 18987308
Subcell Biochem. 2017;84:393-417
pubmed: 28500534
Genome Res. 2004 Jun;14(6):1188-90
pubmed: 15173120
Front Plant Sci. 2014 Sep 15;5:459
pubmed: 25309558
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):368-80
pubmed: 22505257
BMC Bioinformatics. 2011 Apr 22;12:116
pubmed: 21513511
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
pubmed: 15572765
Appl Environ Microbiol. 2006 Nov;72(11):6907-13
pubmed: 16950902
BMC Bioinformatics. 2010 Aug 18;11:431
pubmed: 20718988
Mol Microbiol. 2006 Feb;59(3):989-99
pubmed: 16420366
Bioinformatics. 1998;14(9):755-63
pubmed: 9918945
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
pubmed: 20124692
Nat Rev Microbiol. 2011 Jun;9(6):414-26
pubmed: 21572458
Curr Biol. 2020 Dec 21;30(24):4956-4972.e4
pubmed: 33125862
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Nature. 2009 Feb 12;457(7231):849-53
pubmed: 19212404
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
pubmed: 9254694
Gene. 2000 Jan 25;242(1-2):357-67
pubmed: 10721730
J Bacteriol. 2009 Oct;191(19):6178-85
pubmed: 19648234
Front Microbiol. 2016 Apr 29;7:532
pubmed: 27199898
Nature. 2014 Dec 11;516(7530):259-262
pubmed: 25470041
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
Mol Microbiol. 2019 Sep;112(3):785-799
pubmed: 31136034
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674
pubmed: 19461840
J Bacteriol. 2001 Oct;183(19):5788-92
pubmed: 11544247
ISME J. 2017 Nov;11(11):2407-2425
pubmed: 28777382
Sci Rep. 2015 Nov 03;5:15915
pubmed: 26525406
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):E4601-10
pubmed: 24218584
Nucleic Acids Res. 2005 Jan 20;33(2):511-8
pubmed: 15661851
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6176-E6183
pubmed: 28687675
Protein Expr Purif. 2005 May;41(1):207-34
pubmed: 15915565
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4
pubmed: 24753421
Mol Biol Evol. 2013 May;30(5):1188-95
pubmed: 23418397