The life cycle of SPβ and related phages.
Journal
Archives of virology
ISSN: 1432-8798
Titre abrégé: Arch Virol
Pays: Austria
ID NLM: 7506870
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
16
02
2021
accepted:
09
04
2021
pubmed:
9
6
2021
medline:
17
7
2021
entrez:
8
6
2021
Statut:
ppublish
Résumé
Phages are viruses of bacteria and are the smallest and most common biological entities in the environment. They can reproduce immediately after infection or integrate as a prophage into their host genome. SPβ is a prophage of the Gram-positive model organism Bacillus subtilis 168, and it has been known for more than 50 years. It is sensitive to dsDNA damage and is induced through exposure to mitomycin C or UV radiation. When induced from the prophage, SPβ requires 90 min to produce and release about 30 virions. Genomes of sequenced related strains range between 128 and 140 kb, and particle-packed dsDNA exhibits terminal redundancy. Formed particles are of the Siphoviridae morphotype. Related isolates are known to infect other B. subtilis clade members. When infecting a new host, SPβ presumably follows a two-step strategy, adsorbing primarily to teichoic acid and secondarily to a yet unknown factor. Once in the host, SPβ-related phages pass through complex lysis-lysogeny decisions and either enter a lytic cycle or integrate as a dormant prophage. As prophages, SPβ-related phages integrate at the host chromosome's replication terminus, and frequently into the spsM or kamA gene. As a prophage, it imparts additional properties to its host via phage-encoded proteins. The most notable of these functional proteins is sublancin 168, which is used as a molecular weapon by the host and ensures prophage maintenance. In this review, we summarise the existing knowledge about the biology of the phage regarding its life cycle and discuss its potential as a research object.
Identifiants
pubmed: 34100162
doi: 10.1007/s00705-021-05116-9
pii: 10.1007/s00705-021-05116-9
pmc: PMC8270828
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2119-2130Informations de copyright
© 2021. The Author(s).
Références
Salmond GPC, Fineran PC (2015) A century of the phage: past, present and future. Nat Rev Microbiol 13:777–786. https://doi.org/10.1038/nrmicro3564
doi: 10.1038/nrmicro3564
pubmed: 26548913
Dion MB, Oechslin F, Moineau S (2020) Phage diversity, genomics and phylogeny. Nat Rev Microbiol 18:125–138. https://doi.org/10.1038/s41579-019-0311-5
doi: 10.1038/s41579-019-0311-5
pubmed: 32015529
Yamamoto T, Obana N, Yee LM et al (2014) SP10 infectivity is aborted after bacteriophage SP10 infection induces nonA transcription on the prophage SPβ region of the Bacillus subtilis genome. J Bacteriol 196:693–706. https://doi.org/10.1128/JB.01240-13
doi: 10.1128/JB.01240-13
pubmed: 24272782
pmcid: 3911148
Rettenmier CW, Gingell B, Hemphill HE (1979) The role of temperate bacteriophage SPβ in prophage-mediated interference in Bacillus subtilis. Can J Microbiol 25:1345–1351. https://doi.org/10.1139/m79-212
doi: 10.1139/m79-212
pubmed: 119575
Williams MT, Young FE (1977) Temperate Bacillus subtilis bacteriophage φ3T: chromosomal attachment site and comparison with temperate bacteriophages φ105 and SPO2. J Virol 21:522–529. https://doi.org/10.1128/JVI.21.2.522-529.1977
doi: 10.1128/JVI.21.2.522-529.1977
pubmed: 401899
pmcid: 353853
Gardner AL, Aronson AI (1984) Expression of the Bacillus subtilis glutamine synthetase gene in Escherichia coli. J Bacteriol 158:967–971. https://doi.org/10.1128/JB.158.3.967-971.1984
doi: 10.1128/JB.158.3.967-971.1984
pubmed: 6144669
pmcid: 215536
Asadulghani M, Ogura Y, Ooka T et al (2009) The defective prophage pool of Escherichia coli O157: prophage–prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5:e1000408. https://doi.org/10.1371/journal.ppat.1000408
doi: 10.1371/journal.ppat.1000408
pubmed: 19412337
pmcid: 2669165
Kim EJ, Yu HJ, Lee JH et al (2017) Replication of Vibrio cholerae classical CTX phage. Proc Natl Acad Sci USA 114:2343–2348. https://doi.org/10.1073/pnas.1701335114
doi: 10.1073/pnas.1701335114
pubmed: 28196886
pmcid: 5338506
Conn HJ (1971) The identity of Bacillus subtilis. Médecine Mal Infect 1:45–50. https://doi.org/10.1016/S0399-077X(71)80199-3
doi: 10.1016/S0399-077X(71)80199-3
Hemphill HE, Whiteley HR (1975) Bacteriophages of Bacillus subtilis. Bacteriol Rev 39:257–315
doi: 10.1128/br.39.3.257-315.1975
Burkholder PR, Giles NH (1947) Induced biochemical mutations in Bacillus subtilis. Am J Bot 34:345–348. https://doi.org/10.2307/2437147
doi: 10.2307/2437147
pubmed: 20252518
Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 44:1072–1078. https://doi.org/10.1073/pnas.44.10.1072
doi: 10.1073/pnas.44.10.1072
pubmed: 16590310
pmcid: 528696
Sonenshein AL, Hoch JA, Losick R (2001) Bacillus subtilis and its closest relatives. ASM Press, Washington
doi: 10.1128/9781555817992
Kunst F, Ogasawara N, Moszer I et al (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256. https://doi.org/10.1038/36786
doi: 10.1038/36786
pubmed: 9384377
Barbe V, Cruveiller S, Kunst F et al (2009) From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 155:1758–1775. https://doi.org/10.1099/mic.0.027839-0
doi: 10.1099/mic.0.027839-0
pubmed: 19383706
pmcid: 2885750
Belda E, Sekowska A, Le Fèvre F et al (2013) An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology 159:757–770. https://doi.org/10.1099/mic.0.064691-0
doi: 10.1099/mic.0.064691-0
pubmed: 23429746
Borriss R, Danchin A, Harwood CR et al (2018) Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 11:3–17. https://doi.org/10.1111/1751-7915.13043
doi: 10.1111/1751-7915.13043
pubmed: 29280348
Auchtung JM, Aleksanyan N, Bulku A, Berkmen MB (2016) Biology of ICE Bs1, an integrative and conjugative element in Bacillus subtilis. Plasmid 86:14–25. https://doi.org/10.1016/j.plasmid.2016.07.001
doi: 10.1016/j.plasmid.2016.07.001
pubmed: 27381852
Seaman E, Tarmy E, Marmur J (1964) Inducible phages of Bacillus subtilis. Biochemistry 3:607–613. https://doi.org/10.1021/bi00893a001
doi: 10.1021/bi00893a001
pubmed: 14193626
Brodetsky AM, Romig WR (1965) Characterization of Bacillus subtilis Bacteriophages. J Bacteriol 90:1655–1663. https://doi.org/10.1128/JB.90.6.1655-1663.1965
doi: 10.1128/JB.90.6.1655-1663.1965
pubmed: 4955056
pmcid: 315874
Westers H, Dorenbos R, van Dijl JM et al (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20:2076–2090. https://doi.org/10.1093/molbev/msg219
doi: 10.1093/molbev/msg219
pubmed: 12949151
Rooney AP, Price NPJ, Ehrhardt C et al (2009) Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int J Syst Evol Microbiol 59:2429–2436. https://doi.org/10.1099/ijs.0.009126-0
doi: 10.1099/ijs.0.009126-0
pubmed: 19622642
Fritze D (2004) Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology 94:1245–1248. https://doi.org/10.1094/PHYTO.2004.94.11.1245
doi: 10.1094/PHYTO.2004.94.11.1245
pubmed: 18944461
Meijer WJJ, Horcajadas JA, Salas M (2001) φ29 family of Phages. Microbiol Mol Biol Rev 65:261–287. https://doi.org/10.1128/MMBR.65.2.261-287.2001
doi: 10.1128/MMBR.65.2.261-287.2001
pubmed: 11381102
pmcid: 99027
Reilly BE, Spizizen J (1965) Bacteriophage deoxyribonucleate infection of competent Bacillus subtilis. J Bacteriol 89:782–790. https://doi.org/10.1128/JB.89.3.782-790.1965
doi: 10.1128/JB.89.3.782-790.1965
pubmed: 14273661
pmcid: 277537
Taylor MJ, Thorne CB (1963) Transduction of Bacillus licheniformis and Bacillus subtilis by each of two Phages1. J Bacteriol 86:452–461. https://doi.org/10.1128/JB.86.3.452-461.1963
doi: 10.1128/JB.86.3.452-461.1963
pubmed: 14066421
pmcid: 278456
Klumpp J, Lavigne R, Loessner MJ, Ackermann HW (2010) The SPO1-related bacteriophages. Arch Virol 155:1547–1561. https://doi.org/10.1007/s00705-010-0783-0
doi: 10.1007/s00705-010-0783-0
pubmed: 20714761
Dragoš A, Priyadarshini B, Hasan Z et al (2020) Pervasive prophage recombination occurs during evolution of spore-forming Bacilli. ISME J. https://doi.org/10.1038/s41396-020-00854-1
doi: 10.1038/s41396-020-00854-1
pubmed: 33343000
pmcid: 7608354
Warner FD, Kitos GA, Romano MP, Hemphill HE (1977) Characterization of SPβ: a temperate bacteriophage from Bacillus subtilis 168M. Can J Microbiol 23:45–51. https://doi.org/10.1139/m77-006
doi: 10.1139/m77-006
Zeigler DR (2013) Complete genome sequence of Bacillus subtilis phage φ105. Genome Announc 1:3401. https://doi.org/10.1128/genomeA.e00641-13
doi: 10.1128/genomeA.e00641-13
Godinho LM, El Sadek FM, Monniot C et al (2018) The revisited genome of Bacillus subtilis Bacteriophage SPP1. Viruses 10:705. https://doi.org/10.3390/v10120705
doi: 10.3390/v10120705
pmcid: 6316719
Johnson CM, Grossman AD (2016) Complete genome sequence of Bacillus subtilis strain CU1050, which is sensitive to phage SPβ. Genome Announc 4:e00262-e316. https://doi.org/10.1128/genomeA.00262-16
doi: 10.1128/genomeA.00262-16
pubmed: 27056236
pmcid: 4824269
Fernandes RM, de Lencastre H, Archer LJ (1986) Three new temperate phages of Bacillus subtilis. Microbiology 132:661–668. https://doi.org/10.1099/00221287-132-3-661
doi: 10.1099/00221287-132-3-661
Tucker RG (1969) Acquisition of thymidylate synthetase activity by a thymine-requiring mutant of Bacillus subtilis following infection by the temperate phage φ3. J Gen Virol 4:489–504. https://doi.org/10.1099/0022-1317-4-4-489
doi: 10.1099/0022-1317-4-4-489
pubmed: 4979518
Dean DH, Orrego JC, Hutchison KW, Halvorson HO (1976) New temperate bacteriophage for Bacillus subtilis, ρ11. J Virol 20:509–519. https://doi.org/10.1128/JVI.20.2.509-519.1976
doi: 10.1128/JVI.20.2.509-519.1976
pubmed: 62060
pmcid: 355018
Noyer-Weidner M, Jentsch S, Pawlek B et al (1983) Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SPβ, φ3T, and ρ11. J Virol 46:446–453. https://doi.org/10.1128/JVI.46.2.446-453.1983
doi: 10.1128/JVI.46.2.446-453.1983
pubmed: 6302313
pmcid: 255146
Zahler SA, Korman RZ, Thomas C, Odebralski JM (1987) Temperate Bacteriophages of Bacillus amylolquefaciens. Microbiology 133:2933–2935. https://doi.org/10.1099/00221287-133-10-2933
doi: 10.1099/00221287-133-10-2933
Zahler SA, Korman RZ, Thomas C et al (1987) H2, a temperate bacteriophage isolated from Bacillus amyloliquefaciens strain H. Microbiology 133:2937–2944. https://doi.org/10.1099/00221287-133-10-2937
doi: 10.1099/00221287-133-10-2937
Weiner MP, Zahler SA (1988) Genome homology and host range of some SPβ-related Bacteriophages of Bacillus subtilis and Bacillus amyloliquefaciens. J Gen Virol 69:1307–1315. https://doi.org/10.1099/0022-1317-69-6-1307
doi: 10.1099/0022-1317-69-6-1307
pubmed: 3133451
Estrela AI, De Lencastre H, Archer LJ (1986) Resistance of a Bacillus subtilis mutant to a group of temperate bacteriophages. Microbiology 132:411–415. https://doi.org/10.1099/00221287-132-2-411
doi: 10.1099/00221287-132-2-411
Lovett CM, O’Gara TM, Woodruff JN (1994) Analysis of the SOS inducing signal in Bacillus subtilis using Escherichia coli LexA as a probe. J Bacteriol 176:4914–4923. https://doi.org/10.1128/JB.176.16.4914-4923.1994
doi: 10.1128/JB.176.16.4914-4923.1994
pubmed: 8051005
pmcid: 196327
Sassanfar M, Roberts JW (1990) Nature of the SOS-inducing signal in Escherichia coli. J Mol Biol 212:79–96. https://doi.org/10.1016/0022-2836(90)90306-7
doi: 10.1016/0022-2836(90)90306-7
pubmed: 2108251
Tomasz M (1995) Mitomycin C: small, fast and deadly (but very selective). Chem Biol 2:575–579. https://doi.org/10.1016/1074-5521(95)90120-5
doi: 10.1016/1074-5521(95)90120-5
pubmed: 9383461
Lazarevic V, Düsterhöft A, Soldo B et al (1999) Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPβc2. Microbiology 145(Pt 5):1055–1067. https://doi.org/10.1099/13500872-145-5-1055
doi: 10.1099/13500872-145-5-1055
pubmed: 10376821
McLaughlin JR, Wong HC, Ting YE et al (1986) Control of lysogeny and immunity of Bacillus subtilis temperate bacteriophage SPβ by its d gene. J Bacteriol 167:952–959. https://doi.org/10.1128/jb.167.3.952-959.1986
doi: 10.1128/jb.167.3.952-959.1986
pubmed: 3091583
pmcid: 215964
Koo B, Kritikos G, Farelli JD et al (2017) Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst 4:291-305.e7. https://doi.org/10.1016/j.cels.2016.12.013
doi: 10.1016/j.cels.2016.12.013
pubmed: 28189581
pmcid: 5400513
Au N, Kuester-Schoeck E, Mandava V et al (2005) Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 187:7655–7666. https://doi.org/10.1128/JB.187.22.7655-7666.2005
doi: 10.1128/JB.187.22.7655-7666.2005
pubmed: 16267290
pmcid: 1280312
Miller MC, Resnick JB, Smith BT, Lovett CM (1996) The Bacillus subtilis dinR gene codes for the analogue of Escherichia coli LexA. J Biol Chem 271:33502–33508. https://doi.org/10.1074/jbc.271.52.33502
doi: 10.1074/jbc.271.52.33502
pubmed: 8969214
Yasbin RE, Fields PI, Andersen BJ (1980) Properties of Bacillus subtilis 168 derivatives freed of their natural prophages. Gene 12:155–159. https://doi.org/10.1016/0378-1119(80)90026-8
doi: 10.1016/0378-1119(80)90026-8
pubmed: 6783474
Mendez R, Gutierrez A, Reyes J, Márquez-Magaña L (2012) The extracytoplasmic function sigma factor SigY is important for efficient maintenance of the Spβ prophage that encodes sublancin in Bacillus subtilis. DNA Cell Biol 31:946–955. https://doi.org/10.1089/dna.2011.1513
doi: 10.1089/dna.2011.1513
pubmed: 22400495
pmcid: 3378957
Abe K, Takahashi T, Sato T (2020) Extreme C-terminal element of SprA serine integrase is a potential component of the “molecular toggle switch” which controls the recombination and its directionality. Mol Microbiol. https://doi.org/10.1111/mmi.14654
doi: 10.1111/mmi.14654
pubmed: 33244797
Abe K, Takamatsu T, Sato T (2017) Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis. Nucleic Acids Res 45:6669–6683. https://doi.org/10.1093/nar/gkx466
doi: 10.1093/nar/gkx466
pubmed: 28535266
pmcid: 5499854
Abe K, Kawano Y, Iwamoto K et al (2014) Developmentally-regulated excision of the SPβ Prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis. PLoS Genet 10:e1004636. https://doi.org/10.1371/journal.pgen.1004636
doi: 10.1371/journal.pgen.1004636
pubmed: 25299644
pmcid: 4191935
Nicolas P, Mäder U, Dervyn E et al (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335:1103–1106. https://doi.org/10.1126/science.1206848
doi: 10.1126/science.1206848
pubmed: 22383849
Suzuki S, Yoshikawa M, Imamura D et al (2020) Compatibility of site-specific recombination units between mobile genetic elements. iScience 23:100805. https://doi.org/10.1016/j.isci.2019.100805
doi: 10.1016/j.isci.2019.100805
pubmed: 31926432
Erez Z, Steinberger-Levy I, Shamir M et al (2017) Communication between viruses guides lysis–lysogeny decisions. Nature 541:488–493. https://doi.org/10.1038/nature21049
doi: 10.1038/nature21049
pubmed: 28099413
pmcid: 5378303
Lazarevic V (2001) Ribonucleotide reductase genes of Bacillus prophages: a refuge to introns and intein coding sequences. Nucleic Acids Res 29:3212–3218. https://doi.org/10.1093/nar/29.15.3212
doi: 10.1093/nar/29.15.3212
pubmed: 11470879
pmcid: 55833
Lazarevic V, Soldo B, Düsterhöft A et al (1998) Introns and intein coding sequence in the ribonucleotide reductase genes of Bacillus subtilis temperate bacteriophage SPβ. Proc Natl Acad Sci USA 95:1692–1697. https://doi.org/10.1073/pnas.95.4.1692
doi: 10.1073/pnas.95.4.1692
pubmed: 9465078
pmcid: 19153
Lo Piano A, Martínez-Jiménez MI, Zecchi L, Ayora S (2011) Recombination-dependent concatemeric viral DNA replication. Virus Res 160:1–14. https://doi.org/10.1016/j.virusres.2011.06.009
doi: 10.1016/j.virusres.2011.06.009
pubmed: 21708194
Jentsch S, Günthert U, Trautner TA (1981) DNA methyltransferases affecting the sequence 5’CCGG. Nucleic Acids Res 9:2753–2759. https://doi.org/10.1093/nar/9.12.2753
doi: 10.1093/nar/9.12.2753
pubmed: 6269059
pmcid: 326890
Tran-Betcke A, Behrens B, Noyer-Weidner M, Trautner TA (1986) DNA methyltransferase genes of Bacillus subtilis phages: comparison of their nucleotide sequences. Gene 42:89–96. https://doi.org/10.1016/0378-1119(86)90153-8
doi: 10.1016/0378-1119(86)90153-8
pubmed: 3087819
Trautner TA, Pawlek B, Günthert U et al (1980) Restriction and modification in Bacillus subtilis: identification of a gene in the temperate phage SPβ coding for a BsuR specific modification methyltransferase. Mol Gen Genet MGG 180:361–367. https://doi.org/10.1007/BF00425849
doi: 10.1007/BF00425849
pubmed: 6258025
Spancake GA, Hemphill HE (1985) Deletion mutants of Bacillus subtilis bacteriophage SPβ. J Virol 55:39–44. https://doi.org/10.1128/JVI.55.1.39-44.1985
doi: 10.1128/JVI.55.1.39-44.1985
pubmed: 2989558
pmcid: 254895
Fink PS, Korman RZ, Odebralski JM, Zahler SA (1981) Bacillus subtilis bacteriophage SPβc1 is a deletion mutant of SPβ. Mol Gen Genet MGG 182:514–515. https://doi.org/10.1007/BF00293946
doi: 10.1007/BF00293946
pubmed: 6272067
Wu R, Taylor E (1971) Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. J Mol Biol 57:491–511. https://doi.org/10.1016/0022-2836(71)90105-7
doi: 10.1016/0022-2836(71)90105-7
pubmed: 4931680
Murialdo H (1991) Bacteriophage lambda DNA maturation and packaging. Annu Rev Biochem 60:125–153. https://doi.org/10.1146/annurev.bi.60.070191.001013
doi: 10.1146/annurev.bi.60.070191.001013
pubmed: 1831966
Deichelbohrer I, Messer W, Trautner TA (1982) Genome of Bacillus subtilis bacteriophage SPP1: structure and nucleotide sequence of pac, the origin of DNA packaging. J Virol 42:83–90. https://doi.org/10.1128/JVI.42.1.83-90.1982
doi: 10.1128/JVI.42.1.83-90.1982
pubmed: 16789222
pmcid: 256047
Oliveira L, Tavares P, Alonso JC (2013) Headful DNA packaging: bacteriophage SPP1 as a model system. Virus Res 173:247–259. https://doi.org/10.1016/j.virusres.2013.01.021
doi: 10.1016/j.virusres.2013.01.021
pubmed: 23419885
Fink PS, Zahler SA (1982) Restriction fragment maps of the genome of Bacillus subtilis bacteriophage SPβ. Gene 19:235–238. https://doi.org/10.1016/0378-1119(82)90012-9
doi: 10.1016/0378-1119(82)90012-9
pubmed: 6293933
Chai S, Bravo A, Lüder G et al (1992) Molecular analysis of the Bacillus subtilis bacteriophage SPP1 region encompassing genes 1 to 6. J Mol Biol 224:87–102. https://doi.org/10.1016/0022-2836(92)90578-8
doi: 10.1016/0022-2836(92)90578-8
pubmed: 1548711
Forrest D, James K, Yuzenkova Y, Zenkin N (2017) Single-peptide DNA-dependent RNA polymerase homologous to multi-subunit RNA polymerase. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms15774
doi: 10.1038/ncomms15774
Richts B, Hertel R, Potot S et al (2020) Complete genome sequence of the prototrophic Bacillus subtilis subsp. subtilis strain SP1. Microbiol Resour Announc. https://doi.org/10.1128/MRA.00825-20
doi: 10.1128/MRA.00825-20
pubmed: 32763948
pmcid: 7409865
Regamey A, Karamata D (1998) The n-acetylmuramoyl-L-alanine amidase encoded by the Bacillus subtilis 168 prophage SPβ. Microbiology 144:885–893. https://doi.org/10.1099/00221287-144-4-885
doi: 10.1099/00221287-144-4-885
pubmed: 9579063
Kimura K, Itoh Y (2003) Characterization of poly-γ-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-γ-glutamate. Appl Environ Microbiol 69:2491–2497. https://doi.org/10.1128/AEM.69.5.2491-2497.2003
doi: 10.1128/AEM.69.5.2491-2497.2003
pubmed: 12732513
pmcid: 154523
Mamberti S, Prati P, Cremaschi P et al (2015) γ-PGA hydrolases of phage origin in Bacillus subtilis and other microbial genomes. PLoS ONE 10:e0130810. https://doi.org/10.1371/journal.pone.0130810
doi: 10.1371/journal.pone.0130810
pubmed: 26158264
pmcid: 4497714
Soldo B, Lazarevic V, Margot P, Karamata D (1993) Sequencing and analysis of the divergon comprising gtaB, the structural gene of UDP-glucose pyrophosphorylase of Bacillus subtilis 168. J Gen Microbiol 139:3185–3195. https://doi.org/10.1099/00221287-139-12-3185
doi: 10.1099/00221287-139-12-3185
pubmed: 8126437
São-José C, Baptista C, Santos MA (2004) Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol 186:8337–8346. https://doi.org/10.1128/JB.186.24.8337-8346.2004
doi: 10.1128/JB.186.24.8337-8346.2004
pubmed: 15576783
pmcid: 532427
Baptista C, Santos MA, São-José C (2008) Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190:4989–4996. https://doi.org/10.1128/JB.00349-08
doi: 10.1128/JB.00349-08
pubmed: 18487323
pmcid: 2446999
Willms IM, Hoppert M, Hertel R (2017) Characterization of Bacillus subtilis viruses vB_BsuM-Goe2 and vB_BsuM-Goe3. Viruses 9:146. https://doi.org/10.3390/v9060146
doi: 10.3390/v9060146
pmcid: 5490822
Fink PS, Zahler SA (2005) Temperate bacteriophages of Bacillus subtilis. In: The bacteriophages, 2nd edn. Oxford, NY, pp 557–571
Gallego Del Sol F, Penadés JR, Marina A (2019) Deciphering the molecular mechanism underpinning phage arbitrium communication systems. Mol Cell 74:59-72.e3. https://doi.org/10.1016/j.molcel.2019.01.025
doi: 10.1016/j.molcel.2019.01.025
pubmed: 30745087
pmcid: 6458997
Johnson CM, Harden MM, Grossman AD (2020) An integrative and conjugative element encodes an abortive infection system to protect host cells from predation by a bacteriophage. biorxiv. https://doi.org/10.1101/2020.12.13.422588
Zahler SA, Korman RZ, Rosenthal R, Hemphill HE (1977) Bacillus subtilis bacteriophage SPβ: localization of the prophage attachment site, and specialized transduction. J Bacteriol 129:556–558. https://doi.org/10.1128/JB.129.1.556-558.1977
doi: 10.1128/JB.129.1.556-558.1977
pubmed: 401505
pmcid: 234961
Fernandes RM, de Lencastre H, Archer LJ (1989) Specialized transduction in Bacillus subtilis by the phages IG1, IG3, and IG4. Arch Virol 105:137–140. https://doi.org/10.1007/bf0131112410.1007/bf01311124
doi: 10.1007/bf0131112410.1007/bf01311124
pubmed: 2497716
Rosenthal R, Toye PA, Korman RZ, Zahler SA (1979) The prophage of SPβc2dcitK1, a defective specialized transducing phage of Bacillus subtilis. Genetics 92:721–739
doi: 10.1093/genetics/92.3.721
Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70:3985–3993. https://doi.org/10.1128/IAI.70.8.3985-3993.2002
doi: 10.1128/IAI.70.8.3985-3993.2002
pubmed: 12117903
pmcid: 128183
Cui W, Han L, Suo F et al (2018) Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 34:145. https://doi.org/10.1007/s11274-018-2531-7
doi: 10.1007/s11274-018-2531-7
pubmed: 30203131
Spancake GA, Daignault SD, Hemphill HE (1987) Genome homology and divergence in the SPβ-related bacteriophages of Bacillus subtilis. Can J Microbiol 33:249–255. https://doi.org/10.1139/m87-042
doi: 10.1139/m87-042
pubmed: 3032387
Spancake GA, Hemphill HE, Fink PS (1984) Genome organization of SPβ c2 bacteriophage carrying the thyP3 gene. J Bacteriol 157:428–434. https://doi.org/10.1128/JB.157.2.428-434.1984
doi: 10.1128/JB.157.2.428-434.1984
pubmed: 6319359
pmcid: 215265
Connors MJ, Setlow P (1985) Cloning of a small, acid-soluble spore protein gene from Bacillus subtilis and determination of its complete nucleotide sequence. J Bacteriol 161:333–339. https://doi.org/10.1128/JB.161.1.333-339.1985
doi: 10.1128/JB.161.1.333-339.1985
pubmed: 2981806
pmcid: 214876
Frenkiel-Krispin D, Sack R, Englander J et al (2004) Structure of the DNA-SspC complex: implications for DNA packaging, protection, and repair in bacterial spores. J Bacteriol 186:3525–3530. https://doi.org/10.1128/JB.186.11.3525-3530.2004
doi: 10.1128/JB.186.11.3525-3530.2004
pubmed: 15150240
pmcid: 415783
Tovar-Rojo F, Setlow P (1991) Effects of mutant small, acid-soluble spore proteins from Bacillus subtilis on DNA in vivo and in vitro. J Bacteriol 173:4827–4835. https://doi.org/10.1128/JB.173.15.4827-4835.1991
doi: 10.1128/JB.173.15.4827-4835.1991
pubmed: 1906873
pmcid: 208162
Nicholson WL, Sun DX, Setlow B, Setlow P (1989) Promoter specificity of σG-containing RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of forespore-specific promoters. J Bacteriol 171:2708–2718. https://doi.org/10.1128/JB.171.5.2708-2718.1989
doi: 10.1128/JB.171.5.2708-2718.1989
pubmed: 2468649
pmcid: 209955
Hemphill HE, Gage I, Zahler SA, Korman RZ (1980) Prophage-mediated production of a bacteriocinlike substance by SPβ lysogens of Bacillus subtilis. Can J Microbiol 26:1328–1333. https://doi.org/10.1139/m80-220
doi: 10.1139/m80-220
pubmed: 6783280
Dragoš A, Andersen AJC, Lozano-Andrade CN, et al (2020) Phages weaponize their bacteria with biosynthetic gene clusters. bioRxiv. https://doi.org/10.1101/2020.10.01.322628
Paik SH, Chakicherla A, Hansen JN (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, Sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273:23134–23142. https://doi.org/10.1074/jbc.273.36.23134
doi: 10.1074/jbc.273.36.23134
pubmed: 9722542
Oman TJ, Boettcher JM, Wang H et al (2011) Sublancin is not a lantibiotic but an S-linked glycopeptide HHS public access author manuscript. Nat Chem Biol 7:78–80. https://doi.org/10.1038/nchembio.509.Sublancin
doi: 10.1038/nchembio.509.Sublancin
pubmed: 21196935
pmcid: 3060661
Dorenbos R, Stein T, Kabel J et al (2002) Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J Biol Chem 277:16682–16688. https://doi.org/10.1074/jbc.M201158200
doi: 10.1074/jbc.M201158200
pubmed: 11872755
Kouwen TRHM, Van Der Goot A, Dorenbos R et al (2007) Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Mol Microbiol 64:984–999. https://doi.org/10.1111/j.1365-2958.2007.05707.x
doi: 10.1111/j.1365-2958.2007.05707.x
pubmed: 17501922
Wang Q, Zeng X, Wang S et al (2014) The bacteriocin sublancin attenuates intestinal injury in young mice infected with Staphylococcus aureus. Anat Rec 297:1454–1461. https://doi.org/10.1002/ar.22941
doi: 10.1002/ar.22941
Wu C, Biswas S, Garcia De Gonzalo CV, Van Der Donk WA (2019) Investigations into the mechanism of action of sublancin. ACS Infect Dis 5:454–459. https://doi.org/10.1021/acsinfecdis.8b00320
doi: 10.1021/acsinfecdis.8b00320
pubmed: 30582697
pmcid: 6408254
Dubois J-YF, Kouwen TRHM, Schurich AKC et al (2009) Immunity to the bacteriocin sublancin 168 is determined by the SunI (YolF) protein of Bacillus subtilis. Antimicrob Agents Chemother 53:651–661. https://doi.org/10.1128/AAC.01189-08
doi: 10.1128/AAC.01189-08
pubmed: 19047653
Denham EL, Piersma S, Rinket M et al (2019) Differential expression of a prophage-encoded glycocin and its immunity protein suggests a mutualistic strategy of a phage and its host. Sci Rep 9:2845. https://doi.org/10.1038/s41598-019-39169-3
doi: 10.1038/s41598-019-39169-3
pubmed: 30808982
pmcid: 6391423
Klimecka MM, Chruszcz M, Font J et al (2011) Structural analysis of a putative aminoglycoside N-Acetyltransferase from Bacillus anthracis. J Mol Biol 410:411–423. https://doi.org/10.1016/j.jmb.2011.04.076
doi: 10.1016/j.jmb.2011.04.076
pubmed: 21601576
pmcid: 3131501
Galimand M, Fishovitz J, Lambert T et al (2015) AAC(3)-XI, a new aminoglycoside 3-N-acetyltransferase from Corynebacterium striatum. Antimicrob Agents Chemother 59:5647–5653. https://doi.org/10.1128/AAC.01203-15
doi: 10.1128/AAC.01203-15
pubmed: 26149994
pmcid: 4538504
Cooper TF, Heinemann JA (2000) Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proc Natl Acad Sci USA 97:12643–12648. https://doi.org/10.1073/pnas.220077897
doi: 10.1073/pnas.220077897
pubmed: 11058151
pmcid: 18817
Brantl S, Müller P (2019) Toxin-antitoxin systems in Bacillus subtilis. Toxins (Basel) 11:262. https://doi.org/10.3390/toxins11050262
doi: 10.3390/toxins11050262
pmcid: 6562991
Brantl S (2012) Bacterial type I toxin-antitoxin systems. RNA Biol 9:1488–1490. https://doi.org/10.4161/rna.23045
doi: 10.4161/rna.23045
pubmed: 23324552
Jahn N, Brantl S (2013) One antitoxin—two functions: SR4 controls toxin mRNA decay and translation. Nucleic Acids Res 41:9870–9880. https://doi.org/10.1093/nar/gkt735
doi: 10.1093/nar/gkt735
pubmed: 23969414
pmcid: 3834814
Reif C, Löser C, Brantl S (2018) Bacillus subtilis Type I antitoxin SR6 promotes degradation of toxin yonT mRNA and is required to prevent Toxic yoyJ overexpression. Toxins (Basel) 10:74. https://doi.org/10.3390/toxins10020074
doi: 10.3390/toxins10020074
pmcid: 5848175
Holberger LE, Garza-Sánchez F, Lamoureux J et al (2012) A novel family of toxin/antitoxin proteins in Bacillus species. FEBS Lett 586:132–136. https://doi.org/10.1016/j.febslet.2011.12.020
doi: 10.1016/j.febslet.2011.12.020
pubmed: 22200572
Van Melderen L (2010) Toxin–antitoxin systems: why so many, what for? Curr Opin Microbiol 13:781–785. https://doi.org/10.1016/j.mib.2010.10.006
doi: 10.1016/j.mib.2010.10.006
pubmed: 21041110