Pulse-based snacks as functional foods: Processing challenges and biological potential.

Pulses baking deep-fat frying extrusion functional foods snacks

Journal

Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205

Informations de publication

Date de publication:
09 2021
Historique:
revised: 22 06 2021
received: 12 02 2021
accepted: 24 06 2021
pubmed: 30 7 2021
medline: 26 10 2021
entrez: 29 7 2021
Statut: ppublish

Résumé

Despite their high nutritional value and potential health benefits, pulse intake has not increased in the last three decades. Several strategies have been implemented to increase pulse consumption, such as their incorporation in bakery products, breakfast cereals, and snacks. The inclusion of pulses in these products could be an alternative to satisfy the consumers' demand for healthy foods. However, pulse-based snacks face important challenges, including reducing antinutritional factors, achieving consumer acceptance, and consolidating the pulse-based snacks as functional foods. This review summarizes and discusses methods for producing snacks where cereals or tubers were replaced with at least 50% pulses. Also, it briefly assesses their effect on nutritional composition, antinutritional factors, sensory acceptance, and different health benefits evaluations. Extruded snacks exhibited high protein and dietary fiber and low fat content, contrary to the high fat content of deep fat-fried snacks. Meanwhile, baked snacks presented moderate concentrations of protein, dietary fiber, and lipids. Pulses must be pretreated using process combinations such as soaking, dehulling, cooking, fermentation, germination, and extrusion to reduce the antinutritional factors. Pulse-based snacks show good sensory acceptance. However, sensory evaluation should be more rigorous using additional untrained judges. Several studies have evaluated the health benefits of pulse-based snacks. More research is needed to validate scientifically the health benefits associated with their consumption. Pulse-based snacks could be an alternative to improve the nutritional composition of commercially available snacks. The use of pulses as ingredients of healthier snacks represents an important alternative for the food industry due to their low cost, sensory characteristics, high nutritional profile, and environmental benefits.

Identifiants

pubmed: 34324249
doi: 10.1111/1541-4337.12809
doi:

Substances chimiques

Dietary Fiber 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

4678-4702

Subventions

Organisme : COECyTJAL
ID : 8977-2020

Informations de copyright

© 2021 Institute of Food Technologists®.

Références

Ai, Y., Cichy, K. A., Harte, J. B., Kelly, J. D., & Ng, P. K. W. (2016). Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders. Food Chemistry, 211, 538-545. https://doi.org/10.1016/j.foodchem.2016.05.095
Akhtar, H. M. S., Abdin, M., Hamed, Y. S., Wang, W., Chen, G., Chen, D., Chen, C., Li, W., Mukhtar, S., & Zeng, X. (2019). Physicochemical, functional, structural, thermal characterization and α-amylase inhibition of polysaccharides from chickpea (Cicer arietinum L.) hulls. LWT - Food Science and Technology, 113(June), 108265. https://doi.org/10.1016/j.lwt.2019.108265
Altaf, U., Hussain, S. Z., Qadri, T., Iftikhar, F., Naseer, B., & Rather, A. H. (2021). Investigation on mild extrusion cooking for development of snacks using rice and chickpea flour blends. Journal of Food Science and Technology, 58(3), 1143-1155. https://doi.org/10.1007/s13197-020-04628-7
Alvarez, M. D., Herranz, B., Jiménez, M. J., & Canet, W. (2017). End-product quality characteristics and consumer response of chickpea flour-based gluten-free muffins containing corn starch and egg white. Journal of Texture Studies, 48(6), 550-561. https://doi.org/10.1111/jtxs.12263
Anderson, J. W., & Patterson, K. (2005). Snack foods: Comparing nutrition values of excellent choices and “Junk Foods.” Journal of the American College of Nutrition, 24(3), 155-156. https://doi.org/10.1080/07315724.2005.10719458
Angioloni, A., & Collar, C. (2012). High legume-wheat matrices: An alternative to promote bread nutritional value meeting dough viscoelastic restrictions. European Food Research and Technology, 234(2), 273-284. https://doi.org/10.1007/s00217-011-1637-z
Asokapandian, S., Swamy, G. J., & Hajjul, H. (2020). Deep fat frying of foods: A critical review on process and product parameters. Critical Reviews in Food Science and Nutrition, 60(20), 3400-3413. https://doi.org/10.1080/10408398.2019.1688761
Azarpazhooh, E., & Boye, J. I. (2012). Composition of processed dry beans and pulses. In M. Siddiq & M. A. Uebersax (Eds.), Dry beans and pulses production, processing and nutrition (pp. 101-128). John Wiley & Sons. https://doi.org/10.1002/9781118448298.ch5
Bekele, E. K., Nosworthy, M. G., Henry, C. J., Shand, P. J., & Tyler, R. T. (2020). Oxidative stability of direct-expanded chickpea-sorghum snacks. Food Science and Nutrition, 8(8), 4340-4351. https://doi.org/10.1002/fsn3.1731
Berrios, J. D. J. (2006). Extrusion cooking of legumes: Dry bean flours. In D. R. Heldman (Ed.), Encyclopedia of agricultural food and biological engineering (Vol. 1, pp. 1-8). Taylor & Francis.
Berrios, J. D. J., Morales, P., Cámara, M., & Sánchez-Mata, M. C. (2010). Carbohydrate composition of raw and extruded pulse flours. Food Research International, 43(2), 531-536. https://doi.org/10.1016/j.foodres.2009.09.035
Bessada, S. M. F., Barreira, J. C. M., & Oliveira, M. B. P. P. (2019). Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in Food Science and Technology, 93(228), 53-68. https://doi.org/10.1016/j.tifs.2019.08.022
Bielefeld, D., Grafenauer, S., & Rangan, A. (2020). The effects of legume consumption on markers of glycaemic control in individuals with and without diabetes mellitus: A systematic literature review of randomised controlled trials. Nutrients, 12(7), 2123. https://doi.org/10.3390/nu12072123
Bogue, J., Collins, O., & Troy, A. J. (2017). Market analysis and concept development of functional foods. In D. Bagch & S. Nair (Eds.), Developing new functional food and nutraceutical products (1st ed., Vol. 2, pp. 29-45). Elsevier. https://doi.org/10.1016/B978-0-12-802780-6.00002-X
Borsuk, Y., Arntfield, S., Lukow, O. M., Swallow, K., & Malcolmson, L. (2012). Incorporation of pulse flours of different particle size in relation to pita bread quality. Journal of the Science of Food and Agriculture, 92(10), 2055-2061. https://doi.org/10.1002/jsfa.5581
Bozdemir, S., Güneşer, O., & Yilmaz, E. (2015). Properties and stability of deep-fat fried chickpea products. Grasas y Aceites, 66(1), 1-12. https://doi.org/10.3989/gya.0713142
Campos-Vega, R., Loarca-Piña, G., & Oomah, B. D. (2010). Minor components of pulses and their potential impact on human health. Food Research International, 43(2), 461-482. https://doi.org/10.1016/j.foodres.2009.09.004
Capriles, V. D., & Arêas, J. A. G. (2014). Novel approaches in gluten-free breadmaking: Interface between food science, nutrition, and health. Comprehensive Reviews in Food Science and Food Safety, 13(5), 871-890. https://doi.org/10.1111/1541-4337.12091
Cardoso-Santiago, R. A., & Arêas, J. A. G. (2001). Nutritional evaluation of snacks obtained from chickpea and bovine lung blends. Food Chemistry, 74(1), 35-40. https://doi.org/10.1016/S0308-8146(00)00335-6
Cardoso Santiago, R. A., Moreira-Araújo, R. S. R., Pinto E Silva, M. E. M., & Arêas, J. A. G. (2001). The potential of extruded chickpea, corn and bovine lung for malnutrition programs. Innovative Food Science and Emerging Technologies, 2(3), 203-209. https://doi.org/10.1016/S1466-8564(01)00038-8
Chávez-Mendoza, C., & Sánchez, E. (2017). Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules, 22(8), 1360. https://doi.org/10.3390/molecules22081360
Chhetri, D. R. (2019). Myo-inositol and its derivatives: Their emerging role in the treatment of human diseases. Frontiers in Pharmacology, 10(October), 1-8. https://doi.org/10.3389/fphar.2019.01172
Chompoorat, P., Kantanet, N., Hernández Estrada, Z. J., & Rayas-Duarte, P. (2020). Physical and dynamic oscillatory shear properties of gluten-free red kidney bean batter and cupcakes affected by rice flour addition. Foods, 9(5), 616. https://doi.org/10.3390/foods9050616
Chompoorat, P., Rayas-Duarte, P., Hernández-Estrada, Z. J., Phetcharat, C., & Khamsee, Y. (2018). Effect of heat treatment on rheological properties of red kidney bean gluten free cake batter and its relationship with cupcake quality. Journal of Food Science and Technology, 55(12), 4937-4944. https://doi.org/10.1007/s13197-018-3428-z
Ciudad-Mulero, M., Barros, L., Fernandes, Â., Berrios, J. D. J., Cámara, M., Morales, P., Fernández-Ruiz, V., & Ferreira, I. C. F. R. (2018). Bioactive compounds and antioxidant capacity of extruded snack-type products developed from novel formulations of lentil and nutritional yeast flours. Food and Function, 9(2), 819-829. https://doi.org/10.1039/c7fo01730h
Ciudad-Mulero, M., Fernández-Ruiz, V., Cuadrado, C., Arribas, C., Pedrosa, M. M., Berrios, J. D. J., Pan, J., & Morales, P. (2020). Novel gluten-free formulations from lentil flours and nutritional yeast: Evaluation of extrusion effect on phytochemicals and non-nutritional factors. Food Chemistry, 315, 126175. https://doi.org/10.1016/j.foodchem.2020.126175
Clark, S., & Duncan, A. M. (2017). The role of pulses in satiety, food intake and body weight management. Journal of Functional Foods, 38, 612-623. https://doi.org/10.1016/j.jff.2017.03.044
Constantin, O. E., & Istrati, D. I. (2018). Functional properties of snack bars. In V. Lagouri (Ed.), Functional foods (1st ed., pp. 1-14). IntechOpen. https://doi.org/10.5772/intechopen.81020
Corrigan, M. L. (2017). Clinical: Water, electrolytes, and acid-base balance. In L. K. Mahan & J. L. Raymond (Eds.), Krause's food & the nutrition care process (14th ed., pp. 85-97). Elsevier.
Cuj-laines, R., Hernández-santos, B., Herman-lara, E., Martínez-sánchez, C. E., Juárez-barrientos, J. M., Torruco-uco, J. G., & Rodríguez-miranda, J. (2018). Relevant aspects of the development an alternative to reduce global undernourishment. In A. M. Holban & A. M. Grumezescu (Eds.), Alternative and replacement foods (pp. 141-166). Elsevier. https://doi.org/10.1016/B978-0-12-811446-9.00005-8
Debnath, S., Bhat, K. K., & Rastogi, N. K. (2003). Effect of pre-drying on kinetics of moisture loss and oil uptake during deep fat frying of chickpea flour-based snack food. LWT - Food Science and Technology, 36(1), 91-98. https://doi.org/10.1016/S0023-6438(02)00186-X
Devindra, S., & Aruna, T. (2017). Effect of chemical soaking, toasting and crude α-galactosidase enzyme treatment on the oligosaccharide content of red gram flour. Journal of Food Processing and Preservation, 41(3), e12922. https://doi.org/10.1111/jfpp.12922
Domínguez Díaz, L., Fernández-Ruiz, V., & Cámara, M. (2020). An international regulatory review of food health-related claims in functional food products labeling. Journal of Functional Foods, 68(March), 103896. https://doi.org/10.1016/j.jff.2020.103896
Dupuis, J. H., Liu, Q., & Yada, R. Y. (2014). Methodologies for increasing the resistant starch content of food starches: A review. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1219-1234. https://doi.org/10.1111/1541-4337.12104
EFSA. (2015). Scientific opinion on acrylamide in food. EFSA Journal, 13(6), 4104-4321. https://doi.org/10.2903/j.efsa.2015.4104
Ertaş, N., & Türker, S. (2014). Bulgur processes increase nutrition value: Possible role in in-vitro protein digestability, phytic acid, trypsin inhibitor activity and mineral bioavailability. Journal of Food Science and Technology, 51(7), 1401-1405. https://doi.org/10.1007/s13197-012-0638-7
Escobedo, A., Mora, C., & Mojica, L. (2019). Thermal and enzymatic treatments reduced α-galactooligosaccharides in common bean (Phaseolus vulgaris L.) flour. Journal of Food Processing and Preservation, 43(12), e14273. https://doi.org/10.1111/jfpp.14273
Escobedo, A., Loarca-Piña, G., Gaytan-Martínez, M., Orozco-Avila, I., Mojica, L. (2020). Autoclaving and extrusion improve the functional properties and chemical composition of black bean carbohydrate extracts. Journal of Food Science, 85, (9), 2783-2791. https://doi.org/10.1111/1750-3841.15356.
FAO. (2020). FAOSTAT. http://faostat.fao.org/
Fathonah, S., Rosidah Amalia, B., & Humaizah, S. (2020). The formulation of alternative gluten-free mung bean biscuits. Journal of Physics: Conference Series, 1444(1), 012004. https://doi.org/10.1088/1742-6596/1444/1/012004
Ferreira, H., Vasconcelos, M., Gil, A. M., & Pinto, E. (2020). Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 61(1), 85-96. https://doi.org/10.1080/10408398.2020.1716680
Flores-Silva, P. C., Bello-Pérez, L. A., Rodriguez-Ambriz, S. L., & Osorio-Diaz, P. (2017a). In vitro colonic fermentation and glycemic response of high fiber gluten-free snacks in rats. Journal of Functional Foods, 28, 59-63. https://doi.org/10.1016/j.jff.2016.11.018
Flores-Silva, P. C., Rodriguez-Ambriz, S. L., & Bello-Pérez, L. A. (2015). Gluten-free snacks using plantain-chickpea and maize blend: Chemical composition, starch digestibility, and predicted glycemic index. Journal of Food Science, 80(5), C961-C966. https://doi.org/10.1111/1750-3841.12865
Flores-Silva, P. C., Tovar, J., Reynoso-Camacho, R., & Bello-Pérez, L. A. (2017b). Impact of chickpea- and raw plantain-based gluten-free snacks on weight gain, serum lipid profile, and insulin resistance of rats fed with a high-fructose diet. Cereal Chemistry, 94(1), 124-127. https://doi.org/10.1094/CCHEM-03-16-0065-FI
Foschia, M., Horstmann, S. W., Arendt, E. K., & Zannini, E. (2017). Legumes as functional ingredients in gluten-free bakery and pasta products. Annual Review of Food Science and Technology, 8(1), 75-96. https://doi.org/10.1146/annurev-food-030216-030045
Fratianni, F., Cardinale, F., Cozzolino, A., Granese, T., Albanese, D., Di Matteo, M., Zaccardelli, M., Coppola, R., & Nazzaro, F. (2014). Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). Journal of Functional Foods, 7(1), 551-557. https://doi.org/10.1016/j.jff.2013.12.030
Gao, Y., Janes, M. E., Chaiya, B., Brennan, M. A., Brennan, C. S., & Prinyawiwatkul, W. (2018). Gluten-free bakery and pasta products: Prevalence and quality improvement. International Journal of Food Science and Technology, 53(1), 19-32. https://doi.org/10.1111/ijfs.13505
García-Gasca, T., García-Cruz, M., Hernandez-Rivera, E., Ĺopez-Matínez, J., Castañeda-Cuevas, A. L., Yllescas-Gasca, L., Mendiola-Olaya, E., Castro-Guilĺen, J. L., & Blanco-Labra, A. (2012). Effects of tepary bean (Phaseolus acutifolius) protease inhibitor and Semipure lectin fractions on cancer cells. Nutrition and Cancer, 64(8), 1269-1278. https://doi.org/10.1080/01635581.2012.722246
Giménez, M. A., Gámbaro, A., Miraballes, M., Roascio, A., Amarillo, M., Sammán, N., & Lobo, M. (2015). Sensory evaluation and acceptability of gluten-free Andean corn spaghetti. Journal of the Science of Food and Agriculture, 95(1), 186-192. https://doi.org/10.1002/jsfa.6704
Granito, M., Frias, J., Doblado, R., Guerra, M., Champ, M., & Vidal-Valverde, C. (2002). Nutritional improvement of beans (Phaseolus vulgaris) by natural fermentation. European Food Research and Technology, 214(3), 226-231. https://doi.org/10.1007/s00217-001-0450-5
Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends in Food Science and Technology, 99, 284-294. https://doi.org/10.1016/j.tifs.2020.03.012
Gupta, S., Liu, C., & Sathe, S. K. (2019). Quality of a chickpea-based high protein snack. Journal of Food Science, 84(6), 1621-1630. https://doi.org/10.1111/1750-3841.14636
Han, H., & Baik, B. K. (2008). Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. International Journal of Food Science and Technology, 43(11), 1971-1978. https://doi.org/10.1111/j.1365-2621.2008.01800.x
Hess, J. M., & Slavin, J. L. (2018). The benefits of defining “snacks.” Physiology and Behavior, 193, 284-287. https://doi.org/10.1016/j.physbeh.2018.04.019
HHS & USDA. (2015). 2015-2020 dietary guidelines for Americans (8th ed.). http://health.gov/dietaryguidelines/2015/guidelines/
Jenkins, W. M., Jenkins, A. E., Jenkins, A. L., & Brydson, C. (Eds.). (2019). How it works: Mechanisms of action. In The portfolio diet for cardiovascular disease risk reduction (pp. 29-46). Academic Press. https://doi.org/10.1016/b978-0-12-810510-8.00003-0
Jeong, D., Han, J. A., Liu, Q., & Chung, H. J. (2019). Effect of processing, storage, and modification on in vitro starch digestion characteristics of food legumes: A review. Food Hydrocolloids, 90(September 2018), 367-376. https://doi.org/10.1016/j.foodhyd.2018.12.039
Johnston, A. J. (2017). Acute effects of food products containing pulse flours or fractions, on glycemic response, insulin, appetite, and food intake in healthy young adults. University of Manitoba.
Kahlon, T. S., Avena-Bustillos, R. J., & Chiu, M. C. M. (2016). Sensory evaluation of gluten-free quinoa whole grain snacks. Heliyon, 2(12), e00213. https://doi.org/10.1016/j.heliyon.2016.e00213
Khattab, R. Y., & Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT - Food Science and Technology, 42(6), 1113-1118. https://doi.org/10.1016/j.lwt.2009.02.004
Lawless, H. T., & Heymann, H. (2010). Preference testing. In H. T. Lawless & H. Heymann (Eds.), Sensory evaluation of food: Principles and practices (2nd ed., pp. 303-324). Springer Science + Business Media.
Lazou, A., Krokida, M., & Tzia, C. (2010). Sensory properties and acceptability of corn and lentil extruded puffs. Journal of Sensory Studies, 25(6), 838-860. https://doi.org/10.1111/j.1745-459X.2010.00308.x
Liberty, J. T., Dehghannya, J., & Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science and Technology, 92(July), 172-183. https://doi.org/10.1016/j.tifs.2019.07.050
López-Martínez, A., Azuara-Pugliese, V., Sánchez-Macias, A., Sosa-Mendoza, G., Dibildox-Alvarado, E., & Grajales-Lagunes, A. (2019). High protein and low-fat chips (snack) made out of a legume mixture. CYTA - Journal of Food, 17(1), 661-668. https://doi.org/10.1080/19476337.2019.1617353
Luna-Vital, D. A., Mojica, L., González de Mejía, E., Mendoza, S., & Loarca-Piña, G. (2015). Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): A review. Food Research International, 76(P1), 39-50. https://doi.org/10.1016/j.foodres.2014.11.024
Lv, Y., Glahn, R. P., Hebb, R. L., & Rizvi, S. S. H. (2018). Physico-chemical properties, phytochemicals and DPPH radical scavenging activity of supercritical fluid extruded lentils. LWT - Food Science and Technology, 89, 315-321. https://doi.org/10.1016/j.lwt.2017.10.063
Maan, A. A., Anjum, M. A., Khan, M. K. I., Nazir, A., Saeed, F., Afzaal, M., & Aadil, R. M. (2020). Acrylamide formation and different mitigation strategies during food processing-A review. Food Reviews International. https://doi.org/10.1080/87559129.2020.1719505
McKie, V. A., & McCleary, B. V. (2016). A novel and rapid colorimetric method for measuring total phosphorus and phytic acid in foods and animal feeds. Journal of AOAC International, 99(3), 738-743. https://doi.org/10.5740/jaoacint.16-0029
Messina, V. (2014). Nutritional and health benefits of dried beans. The American Journal of Clinical Nutrition, 100(suppl_1), 437S-442S. https://doi.org/10.3945/ajcn.113.071472
Morales, P., Cebadera-Miranda, L., Cámara, R. M., Reis, F. S., Barros, L., Berrios, J. D. J., Ferreira, I. C. F. R., & Cámara, M. (2015). Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. Journal of Functional Foods, 19, 537-544. https://doi.org/10.1016/j.jff.2015.09.044
Moreira-Araújo Regilda S.R., Araújo Marcos A.M., & Arêas, José A.G. (2008). Fortified food made by the extrusion of a mixture of chickpea, corn and bovine lung controls iron-deficiency anaemia in preschool children. Food Chemistry, 107(1), 158-164. https://doi.org/10.1016/j.foodchem.2007.07.074.
Moreno-Celis, U., López-Martínez, F. J., Cervantes-Jiménez, R., Ferríz-Martínez, R. A., Blanco-Labra, A., & García-Gasca, T. (2020). Tepary bean (Phaseolus acutifolius) lectins induce apoptosis and cell arrest in G0/G1 by P53(Ser46) phosphorylation in colon cancer cells. Molecules, 25(5), 1-14. https://doi.org/10.3390/molecules25051021
Moussou, N., Corzo-Martínez, M., Sanz, M. L., Zaidi, F., Montilla, A., & Villamiel, M. (2017). Assessment of Maillard reaction evolution, prebiotic carbohydrates, antioxidant activity and α-amylase inhibition in pulse flours. Journal of Food Science and Technology, 54(4), 890-900. https://doi.org/10.1007/s13197-016-2298-5
Naqash, F., Gani, A., Gani, A., & Masoodi, F. A. (2017). Gluten-free baking: Combating the challenges - A review. Trends in Food Science and Technology, 66, 98-107. https://doi.org/10.1016/j.tifs.2017.06.004
Nasrin, T. A. A., & Anal, A. K. (2014). Resistant starch: Properties, preparations and applications in functional foods. In A. Noomhorm, I. Ahmad, & A. K. Anal (Eds.), Functional foods and dietary supplements: Processing effects and health benefits (1st ed., pp. 227-253). John Wiley & Sons. https://doi.org/10.1002/9781118227800.ch9
Nawaz, M. A., Tan, M., Øiseth, S., & Buckow, R. (2020). An emerging segment of functional legume-based beverages: A review. Food Reviews International. https://doi.org/10.1080/87559129.2020.1762641
Nazir, M., Arif, S., Khan, R. S., Nazir, W., Khalid, N., & Maqsood, S. (2019). Opportunities and challenges for functional and medicinal beverages: Current and future trends. Trends in Food Science and Technology, 88(April), 513-526. https://doi.org/10.1016/j.tifs.2019.04.011
Nikmaram, N., Leong, S. Y., Koubaa, M., Zhu, Z., Barba, F. J., Greiner, R., Oey, I., & Roohinejad, S. (2017). Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control, 79, 62-73. https://doi.org/10.1016/j.foodcont.2017.03.027
Nyombaire, G., Siddiq, M., & Dolan, K. D. (2011). Physico-chemical and sensory quality of extruded light red kidney bean (Phaseolus vulgaris L.) porridge. LWT - Food Science and Technology, 44(7), 1597-1602. https://doi.org/10.1016/j.lwt.2011.02.016
O'Sullivan, M. G. (2017). Sensory affective (hedonic) testing. In M. G. O'Sullivan (Ed.), A handbook for sensory and consumer-driven new product development (1st ed., pp. 39-57). Elsevier. https://doi.org/10.1016/b978-0-08-100352-7.00003-8
Offiah, V., Kontogiorgos, V., & Falade, K. O. (2019). Extrusion processing of raw food materials and by-products: A review. Critical Reviews in Food Science and Nutrition, 59(18), 2979-2998. https://doi.org/10.1080/10408398.2018.1480007
Padhi, E. M. T., & Ramdath, D. D. (2017). A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors. Journal of Functional Foods, 38, 635-643. https://doi.org/10.1016/j.jff.2017.03.043
Patterson, C. A., Curran, J., & Der, T. (2017). Effect of processing on antinutrient compounds in pulses. Cereal Chemistry, 94(1), 2-10. https://doi.org/10.1094/CCHEM-05-16-0144-FI
Protopapas, V. B., Bhaduri, S., & Navder, K. (2021). Comparison of the physical, textural, sensory, and nutritional properties of rice flour and green banana flour on the acceptability of gluten-free chocolate chip oatmeal bars. Journal of Food Processing & Technology, 11(12), 856.
Rakić, S., Petrović, S., Kukić, J., Jadranin, M., Tešević, V., Povrenović, D., & Šiler-Marinković, S. (2007). Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chemistry, 104(2), 830-834. https://doi.org/10.1016/j.foodchem.2007.01.025
Ramírez-Jiménez, A. K., Gaytán-Martínez, M., Morales-Sánchez, E., & Loarca-Piña, G. (2018). Functional properties and sensory value of snack bars added with common bean flour as a source of bioactive compounds. LWT - Food Science and Technology, 89(141), 674-680. https://doi.org/10.1016/j.lwt.2017.11.043
Ramírez-Jiménez, A. K., Reynoso-Camacho, R., Tejero, M. E., León-Galván, F., & Loarca-Piña, G. (2015). Potential role of bioactive compounds of Phaseolus vulgaris L. on lipid-lowering mechanisms. Food Research International, 76(P1), 92-104. https://doi.org/10.1016/j.foodres.2015.01.002
Rathod, R. P., & Annapure, U. S. (2016). Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT - Food Science and Technology, 66, 114-123. https://doi.org/10.1016/j.lwt.2015.10.028
Rawal, V., & Navarro, D. K. (2019). The global economy of pulses. Food and Agriculture Organization.
Ryland, D., Vaisey-Genser, M., Arntfield, S. D., & Malcolmson, L. J. (2010). Development of a nutritious acceptable snack bar using micronized flaked lentils. Food Research International, 43(2), 642-649. https://doi.org/10.1016/j.foodres.2009.07.032
Saldanha do Carmo, C., Varela, P., Poudroux, C., Dessev, T., Myhrer, K., Rieder, A., Zobel, H., Sahlstrøm, S., & Knutsen, S. H. (2019). The impact of extrusion parameters on physicochemical, nutritional and sensorial properties of expanded snacks from pea and oat fractions. LWT - Food Science and Technology, 112(January), 108252. https://doi.org/10.1016/j.lwt.2019.108252
Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition, 2(1), 1-14. https://doi.org/10.1186/s43014-020-0020-5
Shevkani, K., Singh, N., Rattan, B., Singh, J. P., Kaur, A., & Singh, B. (2019). Effect of chickpea and spinach on extrusion behavior of corn grit. Journal of Food Science and Technology, 56(4), 2257-2266. https://doi.org/10.1007/s13197-019-03712-x
Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from edible legumes: Chemistry, processing, and health benefits. Journal of Medicinal Food, 7(1), 67-78. https://doi.org/10.1089/109662004322984734
Shi, L., Arntfield, S. D., & Nickerson, M. (2018). Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Research International, 107(2017), 660-668. https://doi.org/10.1016/j.foodres.2018.02.056
Shimelis, E. A., & Rakshit, S. K. (2007). Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chemistry, 103(1), 161-172. https://doi.org/10.1016/j.foodchem.2006.08.005
Siddiq, M., Kelkar, S., Harte, J. B., Dolan, K. D., & Nyombaire, G. (2013). Functional properties of flour from low-temperature extruded navy and pinto beans (Phaseolus vulgaris L.). LWT - Food Science and Technology, 50(1), 215-219. https://doi.org/10.1016/j.lwt.2012.05.024
Sievenpiper, J. L., Kendall, C. W. C., Esfahani, A., Wong, J. M. W., Carleton, A. J., Jiang, H. Y., Bazinet, R. P., Vidgen, E., & Jenkins, D. J. A. (2009). Effect of non-oil-seed pulses on glycaemic control: A systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia, 52(8), 1479-1495. https://doi.org/10.1007/s00125-009-1395-7
Simons, C. W., Hall, C., Tulbek, M., Mendis, M., Heck, T., & Ogunyemi, S. (2015). Acceptability and characterization of extruded pinto, navy and black beans. Journal of the Science of Food and Agriculture, 95(11), 2287-2291. https://doi.org/10.1002/jsfa.6948
Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101(June), 1-16. https://doi.org/10.1016/j.foodres.2017.09.026
Singh, S., Gamlath, S., & Wakeling, L. (2007). Nutritional aspects of food extrusion: A review. International Journal of Food Science and Technology, 42(8), 916-929. https://doi.org/10.1111/j.1365-2621.2006.01309.x
Smith, J., & Hardacre, A. (2011). Development of an extruded snack product from the legume Vicia faba minor. Procedia Food Science, 1, 1573-1580. https://doi.org/10.1016/j.profoo.2011.09.233
Sparvoli, F., Laureati, M., Pilu, R., Pagliarini, E., Toschi, I., Giuberti, G., Fortunati, P., Daminati, M. G., Cominelli, E., & Bollini, R. (2016). Exploitation of common bean flours with low antinutrient content for making nutritionally enhanced biscuits. Frontiers in Plant Science, 7(June), 1-14. https://doi.org/10.3389/fpls.2016.00928
Suárez-Martínez, S. E., Ferriz-Martínez, R. A., Campos-Vega, R., Elton-Puente, J. E., De La Torre Carbot, K., & García-Gasca, T. (2016). Bean seeds: Leading nutraceutical source for human health. CYTA - Journal of Food, 14(1), 131-137. https://doi.org/10.1080/19476337.2015.1063548
Szczygiel, E. J., Harte, J. B., Strasburg, G. M., & Cho, S. (2017). Consumer acceptance and aroma characterization of navy bean (Phaseolus vulgaris) powders prepared by extrusion and conventional processing methods. Journal of the Science of Food and Agriculture, 97(12), 4142-4150. https://doi.org/10.1002/jsfa.8284
Takagi, R., Sasaki, K., Sasaki, D., Fukuda, I., Tanaka, K., Yoshida, K., Kondo, A., & Osawa, R. (2016). A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS ONE, 11(8), 1-16. https://doi.org/10.1371/journal.pone.0160533
Thavarajah, D., McSwain, M., Johnson, C. R., Kumar, S., & Thavarajah, P. (2019). Pulses, global health, and sustainability: Future trends. In W. Dahl (Ed.), Health benefits of pulses (1st ed., pp. 1-17). Springer International Publishing. https://doi.org/10.1007/978-3-030-12763-3_1
Thirunathan, P., & Manickavasagan, A. (2018). Processing methods for reducing alpha-galactosides in pulses. Critical Reviews in Food Science and Nutrition, 59(20), 3334-3348. https://doi.org/10.1080/10408398.2018.1490886
Tiwari, U., Gunasekaran, M., Jaganmohan, R., Alagusundaram, K., & Tiwari, B. K. (2011). Quality characteristic and shelf life studies of deep-fried snack prepared from rice brokens and legumes by-product. Food and Bioprocess Technology, 4(7), 1172-1178. https://doi.org/10.1007/s11947-009-0219-6
Vasundhra, Kumar, S B., Vijaykrishnaraj, M., & Prabhasankar, P. (2018). Organoleptic and shelf stability analysis of legume based gluten free snacks: Its biochemical and immunochemical validation. Journal of Food Measurement and Characterization, 12(1), 94-104. https://doi.org/10.1007/s11694-017-9620-4
Wang, N., Hatcher, D. W., Tyler, R. T., Toews, R., & Gawalko, E. J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International, 43(2), 589-594. https://doi.org/10.1016/j.foodres.2009.07.012
Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568-585. https://doi.org/10.1111/1541-4337.12143
Wang, Y. K., Zhang, X., Chen, G. L., Yu, J., Yang, L. Q., & Gao, Y. Q. (2016). Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. Journal of Functional Foods, 24, 359-372. https://doi.org/10.1016/j.jff.2016.04.026
White, B. L., & Howard, L. R. (2013). Canned whole dry beans and bean products. In M. Siddiq & M. A. Uebersax (Eds.), Dry beans and pulses production, processing and nutrition (1st ed., pp. 155-183). John Wiley & Sons.
Wiesinger, J. A., Cichy, K. A., Tako, E., & Glahn, R. P. (2018). The fast cooking and enhanced iron bioavailability properties of the Manteca yellow bean (Phaseolus vulgaris L.). Nutrients, 10(11), 1609. https://doi.org/10.3390/nu10111609
Xu, B., & Chang, S. K. C. (2012). Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. Food Chemistry, 134(3), 1287-1296. https://doi.org/10.1016/j.foodchem.2012.02.212
Xu, B. J., Yuan, S. H., & Chang, S. K. C. (2007). Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. Journal of Food Science, 72(2), S167-S177. https://doi.org/10.1111/j.1750-3841.2006.00261.x
Xu, J., Zhang, Y., Wang, W., & Li, Y. (2020). Advanced properties of gluten-free cookies, cakes, and crackers: A review. Trends in Food Science & Technology, 103(April), 200-213. https://doi.org/10.1016/j.tifs.2020.07.017
Yağcı, S., Altan, A., & Doğan, F. (2020). Effects of extrusion processing and gum content on physicochemical, microstructural and nutritional properties of fermented chickpea-based extrudates. LWT - Food Science and Technology, 124, 109150. https://doi.org/10.1016/j.lwt.2020.109150
Yang, Q., Gan, R., Ge, Y., Zhang, D., & Corke, H. (2018). Polyphenols in common beans (Phaseolus vulgaris L.): Chemistry, analysis, and factors affecting composition. Comprehensive Reviews in Food Science and Food Safety, 0, 1-22. https://doi.org/10.1111/1541-4337.12391
Zhao, Y., Du, S. K., Wang, H., & Cai, M. (2014). In vitro antioxidant activity of extracts from common legumes. Food Chemistry, 152, 462-466. https://doi.org/10.1016/j.foodchem.2013.12.006
Zucco, F., Borsuk, Y., & Arntfield, S. D. (2011). Physical and nutritional evaluation of wheat cookies supplemented with pulse flours of different particle sizes. LWT - Food Science and Technology, 44(10), 2070-2076. https://doi.org/10.1016/j.lwt.2011.06.007

Auteurs

Alejandro Escobedo (A)

Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, México.

Luis Mojica (L)

Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, México.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Humans Male Female Cancer Survivors Middle Aged
Lebanon Dietary Fiber Humans Micronutrients Diet
Humans Ireland Male Female Adult

Classifications MeSH