Transcriptomic and Metabolic Network Analysis of Metabolic Reprogramming and IGF-1 Modulation in SCA3 Transgenic Mice.
RNA-seq
context-specific metabolic networks
insulin-like growth factor 1
spinocerebellar ataxia type 3
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
26 Jul 2021
26 Jul 2021
Historique:
received:
30
06
2021
revised:
19
07
2021
accepted:
20
07
2021
entrez:
7
8
2021
pubmed:
8
8
2021
medline:
9
9
2021
Statut:
epublish
Résumé
Spinocerebellar ataxia type 3 (SCA3) is a genetic neurodegenerative disease for which a cure is still needed. Growth hormone (GH) therapy has shown positive effects on the exercise behavior of mice with cerebellar atrophy, retains more Purkinje cells, and exhibits less DNA damage after GH intervention. Insulin-like growth factor 1 (IGF-1) is the downstream mediator of GH that participates in signaling and metabolic regulation for cell growth and modulation pathways, including SCA3-affected pathways. However, the underlying therapeutic mechanisms of GH or IGF-1 in SCA3 are not fully understood. In the present study, tissue-specific genome-scale metabolic network models for SCA3 transgenic mice were proposed based on RNA-seq. An integrative transcriptomic and metabolic network analysis of a SCA3 transgenic mouse model revealed that metabolic signaling pathways were activated to compensate for the metabolic remodeling caused by SCA3 genetic modifications. The effect of IGF-1 intervention on the pathology and balance of SCA3 disease was also explored. IGF-1 has been shown to invoke signaling pathways and improve mitochondrial function and glycolysis pathways to restore cellular functions. As one of the downregulated factors in SCA3 transgenic mice, IGF-1 could be a potential biomarker and therapeutic target.
Identifiants
pubmed: 34360740
pii: ijms22157974
doi: 10.3390/ijms22157974
pmc: PMC8348158
pii:
doi:
Substances chimiques
insulin-like growth factor-1, mouse
0
Insulin-Like Growth Factor I
67763-96-6
Growth Hormone
9002-72-6
Ataxin-3
EC 3.4.19.12
Atxn3 protein, mouse
EC 3.4.19.12
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Ministry of Science and Technology, Taiwan
ID : MOST-108-2636-B- 002 -001; MOST-109-2636-B- 002 -001 ; MOST -107-2314-B-371 -001 -MY2
Organisme : Changhua Christian Hospital
ID : 105-CCH-IRP-053
Organisme : Health Promotion Administration, Ministry of Health and Welfare
ID : 106
Références
Mov Disord. 2011 Mar;26(4):731-5
pubmed: 21506152
Mol Ther Nucleic Acids. 2017 Jun 16;7:200-210
pubmed: 28624196
Neuroimage Clin. 2018 Mar 29;19:90-97
pubmed: 30035006
OMICS. 2012 May;16(5):284-7
pubmed: 22455463
Mol Neurodegener. 2018 Jun 22;13(1):31
pubmed: 29929540
Biochem Biophys Res Commun. 2020 Aug 20;529(2):467-473
pubmed: 32703453
Hum Mol Genet. 2017 Sep 1;26(17):3362-3374
pubmed: 28854700
Front Mol Neurosci. 2019 Jun 27;12:159
pubmed: 31316347
Trends Endocrinol Metab. 2001 Aug;12(6):252-7
pubmed: 11445442
Nat Rev Endocrinol. 2013 Jun;9(6):366-376
pubmed: 23591370
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D322-6
pubmed: 16381878
J Neurosci. 2001 Aug 1;21(15):5389-96
pubmed: 11466410
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Cell Death Differ. 2006 Mar;13(3):524-6
pubmed: 16282980
Adv Exp Med Biol. 2015;888:85-105
pubmed: 26663180
Brain Pathol. 2008 Jan;18(1):130-8
pubmed: 18226108
Chin Med J (Engl). 2015 Feb 5;128(3):291-4
pubmed: 25635421
Mov Disord. 2011 Feb 1;26(2):358-9
pubmed: 20960476
Nat Commun. 2020 Mar 24;11(1):1537
pubmed: 32210240
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Genome Biol. 2014;15(12):550
pubmed: 25516281
Cerebellum Ataxias. 2014 Oct 02;1:13
pubmed: 26331037
Nat Biotechnol. 2019 Aug;37(8):907-915
pubmed: 31375807
J Mol Biol. 2019 Apr 19;431(9):1729-1742
pubmed: 30664869
ScientificWorldJournal. 2006 Jan 18;6:53-80
pubmed: 16432628
BMC Syst Biol. 2010 Oct 19;4:140
pubmed: 20959003
J Neuropathol Exp Neurol. 2003 Oct;62(10):1006-18
pubmed: 14575237
PLoS One. 2017 Apr 13;12(4):e0175248
pubmed: 28406926
Int J Mol Sci. 2020 Apr 26;21(9):
pubmed: 32357546
PLoS Comput Biol. 2019 Apr 15;15(4):e1006867
pubmed: 30986217
PLoS Comput Biol. 2009 Aug;5(8):e1000489
pubmed: 19714220
EBioMedicine. 2019 May;43:98-106
pubmed: 31126892
Bioinformatics. 2013 Jul 15;29(14):1830-1
pubmed: 23740750
Ann Neurol. 2018 Jul;84(1):64-77
pubmed: 29908063
Mol Endocrinol. 2014 Jul;28(7):1012-25
pubmed: 24825400
Nat Rev Endocrinol. 2020 Mar;16(3):135-146
pubmed: 31780780
Neurobiol Dis. 2020 Feb;134:104635
pubmed: 31669734
Int J Mol Sci. 2017 Oct 05;18(10):
pubmed: 28981462
Nucleic Acids Res. 2000 Jan 1;28(1):27-30
pubmed: 10592173
Aging (Albany NY). 2020 Nov 10;12(23):23619-23646
pubmed: 33196459
Free Radic Res. 2003 Dec;37(12):1307-17
pubmed: 14753755
Mol Biosyst. 2016 Feb;12(2):477-9
pubmed: 26661513
Mol Ther Nucleic Acids. 2019 Sep 6;17:601-614
pubmed: 31394429
Ann Neurol. 1996 Mar;39(3):335-42
pubmed: 8602752
BMC Syst Biol. 2013 Aug 08;7:74
pubmed: 23927696
Methods Mol Biol. 2012;810:25-58
pubmed: 22057559