Genotypic identification of Panicum spp. in New South Wales, Australia using DNA barcoding.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 08 2021
06 08 2021
Historique:
received:
21
12
2020
accepted:
16
07
2021
entrez:
7
8
2021
pubmed:
8
8
2021
medline:
16
11
2021
Statut:
epublish
Résumé
Australia has over 30 Panicum spp. (panic grass) including several non-native species that cause crop and pasture loss and hepatogenous photosensitisation in livestock. It is critical to correctly identify them at the species level to facilitate the development of appropriate management strategies for efficacious control of Panicum grasses in crops, fallows and pastures. Currently, identification of Panicum spp. relies on morphological examination of the reproductive structures, but this approach is only useful for flowering specimens and requires significant taxonomic expertise. To overcome this limitation, we used multi-locus DNA barcoding for the identification of ten selected Panicum spp. found in Australia. With the exception of P. buncei, other native Australian Panicum were genetically separated at the species level and distinguished from non-native species. One nuclear (ITS) and two chloroplast regions (matK and trnL intron-trnF) were identified with varying facility for DNA barcode separation of the Panicum species. Concatenation of sequences from ITS, matK and trnL intron-trnF regions provided clear separation of eight regionally collected species, with a maximum intraspecific distance of 0.22% and minimum interspecific distance of 0.33%. Two of three non-native Panicum species exhibited a smaller genome size compared to native species evaluated, and we speculate that this may be associated with biological advantages impacting invasion of non-native Panicum species in novel locations. We conclude that multi-locus DNA barcoding, in combination with traditional taxonomic identification, provides an accurate and cost-effective adjunctive tool for further distinguishing Panicum spp. at the species level.
Identifiants
pubmed: 34362980
doi: 10.1038/s41598-021-95610-6
pii: 10.1038/s41598-021-95610-6
pmc: PMC8346583
doi:
Substances chimiques
DNA, Plant
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16055Informations de copyright
© 2021. The Author(s).
Références
Byng, J. W. The Flowering Plants Handbook (Plant Gateway Ltd., Chennai, 2014).
Verloove, F. A Revision of the Genus Panicum (Poaceae, Paniceae) in Belgium. Syst. Geogr. Pl 71, 53 (2001).
doi: 10.2307/3668753
Aliscioni, S. S., Giussani, L. M., Zuloaga, F. O. & Kellogg, E. A. A molecular phylogeny of Panicum (Poaceae: Paniceae): tests of monophyly and phylogenetic placement within the Panicoideae. Am. J. Bot. 90, 796–821 (2003).
pubmed: 21659176
doi: 10.3732/ajb.90.5.796
Llewellyn, R. et al. Impact of Weeds in Australian Grain Production (Grains Research and Development Corporation, Barton, 2016).
Smith, B. L. et al. Crystal-associated cholangiopathy associated with the ingestion of Panicum spp. and other plants. N. Z. Vet. J. 40, 35–35 (1992).
doi: 10.1080/00480169.1992.36513
Lancaster, M. J., Vit, I. & Lyford, R. L. Analysis of bile crystals from sheep grazing Panicum schinzii (sweet grass). Aust. Vet. J. 68, 281 (1991).
pubmed: 1953556
doi: 10.1111/j.1751-0813.1991.tb03246.x
Chen, Y., Quinn, J. C., Weston, L. A. & Loukopoulos, P. The aetiology, prevalence and morbidity of outbreaks of photosensitisation in livestock: A review. PLoS ONE 14, e0211625 (2019).
pubmed: 30811417
pmcid: 6392228
doi: 10.1371/journal.pone.0211625
Bridges, C. H., Camp, B. J., Livingston, C. W. & Bailey, E. M. Kleingrass (Panicum coloratum L.) poisoning in sheep. Vet. Path. 24, 525–531 (1987).
doi: 10.1177/030098588702400609
Miles, C. O. et al. Identification of a sapogenin glucuronide in the bile of sheep affected by Panicum dichotomiflorum toxicosis. N. Z. Vet. J. 39, 150–152 (1991).
pubmed: 16031644
doi: 10.1080/00480169.1991.35684
Quinn, J. C., Kessell, A. & Weston, L. A. Secondary plant products causing photosensitization in grazing herbivores: Their structure, activity and regulation. Int. J. Mol. Sci. 15, 1441–1465 (2014).
pubmed: 24451131
pmcid: 3907879
doi: 10.3390/ijms15011441
Walsh, N. G. & Entwisle, T. G. in Flora of Victoria 2, (1994). Vol 2: 584–590
Two new genera. Zuloaga, F. O., Scataglini, M. A. & Morrone, O. A phylogenetic evaluation of Panicum sects. Agrostoidea, Megista, Prionitia and Tenera (Panicoideae, Poaceae) Stephostachys and Sorengia. Taxon 59, 1535–1546 (2010).
doi: 10.1002/tax.595017
Pyšek, P. et al. Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB Plants 5, plt042–plt042 (2013).
doi: 10.1093/aobpla/plt042
Coissac, E., Hollingsworth, P. M., Lavergne, S. & Taberlet, P. From barcodes to genomes: extending the concept of DNA barcoding. Mol. Ecol. 25, 1423–1428 (2016).
pubmed: 26821259
doi: 10.1111/mec.13549
Schmid, R., Walsh, N. G. & Entwisle, T. J. Flora of Victoria. Vol. 2. Ferns and allied plants, conifers and monocotyledons. Taxon 44, 291 (1995).
Woese, C. R. Whither microbiology? Phylogenetic trees. Curr. Biol. 6, 1060–1063 (1996).
pubmed: 8805350
doi: 10.1016/S0960-9822(02)70664-7
Hebert, P. D. N., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B: Biol. Sci. 270, 313–321 (2003).
doi: 10.1098/rspb.2002.2218
CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. U.S.A. 106, 12794–12797 (2009).
pmcid: 2722355
doi: 10.1073/pnas.0905845106
Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8, e66213 (2013).
pubmed: 23861743
pmcid: 3704603
doi: 10.1371/journal.pone.0066213
Hollingsworth, P. M. DNA barcoding: potential users. Genom. Soc. Policy 3, 44 (2007).
pmcid: 5424908
doi: 10.1186/1746-5354-3-2-44
Hollingsworth, P. M., Li, D. Z., Van Der Bank, M. & Twyford, A. D. Telling plant species apart with DNA: from barcodes to genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150338 (2016).
Parmentier, I. et al. How effective are DNA barcodes in the identification of African rainforest trees?. PLoS ONE 8, e54921 (2013).
pubmed: 23565134
pmcid: 3615068
doi: 10.1371/journal.pone.0054921
Kesanakurti, P. R. et al. Spatial patterns of plant diversity below-ground as revealed by DNA barcoding. Mol. Ecol. 20, 1289–1302 (2011).
pubmed: 21255172
doi: 10.1111/j.1365-294X.2010.04989.x
Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol 28, 58–66 (2013).
pubmed: 22889499
doi: 10.1016/j.tree.2012.07.013
Valentini, A., Pompanon, F. O. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).
pubmed: 19100655
doi: 10.1016/j.tree.2008.09.011
Kress, W. J., Erickson, D. L., Swenson, N. G. & Thompson, J. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PLoS ONE 5, e15409 (2010).
pubmed: 21085700
pmcid: 2976767
doi: 10.1371/journal.pone.0015409
Krishnamurthy, P. K. & Francis, R. A. A critical review on the utility of DNA barcoding in biodiversity conservation. Biodivers. Conserv. 21, 1901–1919 (2012).
doi: 10.1007/s10531-012-0306-2
Wolfe, K. H., Li, W. H. & Sharp, P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. 84, 9054–9058 (1987).
pubmed: 3480529
pmcid: 299690
doi: 10.1073/pnas.84.24.9054
Fazekas, A. J. et al. Are plant species inherently harder to discriminate than animal species using DNA barcoding markers?. Mol. Ecol. Resour. 9(Suppl s1), 130–139 (2009).
pubmed: 21564972
doi: 10.1111/j.1755-0998.2009.02652.x
Naciri, Y., Caetano, S. & Salamin, N. Plant DNA barcodes and the influence of gene flow. Mol. Ecol. Resour. 12, 575–580 (2012).
pubmed: 22394382
doi: 10.1111/j.1755-0998.2012.03130.x
Hunt, H. V. et al. Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet P. miliaceum. J. Exp. Bot. 65, 3165–3175 (2014).
pubmed: 24723408
pmcid: 4071833
doi: 10.1093/jxb/eru161
Zimmermann, T., Bocksberger, G., Brüggemann, W. & Berberich, T. Phylogenetic relationship and molecular taxonomy of African grasses of the genus Panicum inferred from four chloroplast DNA-barcodes and nuclear gene sequences. J. Plant. Res. 126, 363–371 (2013).
pubmed: 23263454
doi: 10.1007/s10265-012-0538-y
Bafeel, S. O. et al. DNA barcoding of arid wild plants using rbcL gene sequences. Genet. Mol. Res. 11, 1934–1941 (2012).
pubmed: 22869548
doi: 10.4238/2012.July.19.12
Bouchenak-Khelladi, Y. et al. Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol. Phylogenet. Evol. 47, 488–505 (2008).
pubmed: 18358746
doi: 10.1016/j.ympev.2008.01.035
Drumwright, A. M., Allen, B. W., Huff, K. A., Ritchey, P. A. & Cahoon, A. B. Survey and DNA barcoding of Poaceae in flat rock cedar glades and barrens state natural area, murfreesboro, tennessee. Castanea 76, 300–310. https://doi.org/10.2179/11-005.1 (2011).
doi: 10.2179/11-005.1
Sede, S. Phylogenetic studies in the Paniceae (Poaceae): A realignment of section Lorea of Panicum. Syst. Bot. 33, 284–300 (2008).
doi: 10.1600/036364408784571626
Kellogg, E. A., Aliscioni, S. S., Morrone, O., Pensiero, J. & Zuloaga, F. A Phylogeny of Setaria (Poaceae, Panicoideae, Paniceae) and related genera based on the chloroplast gene ndhF. Int. J. Plant. Sci. 170, 117–131 (2009).
doi: 10.1086/593043
Grass Phylogeny Working Group II. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol. 193, 304–312 (2012).
doi: 10.1111/j.1469-8137.2011.03972.x
Dong, W., Liu, J., Yu, J., Wang, L. & Zhou, S. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE 7, e35071 (2012).
pubmed: 22511980
pmcid: 3325284
doi: 10.1371/journal.pone.0035071
Wang, Q., Yu, Q.-S. & Liu, J.-Q. Are nuclear loci ideal for barcoding plants? A case study of genetic delimitation of two sister species using multiple loci and multiple intraspecific individuals. J. Syst. Evol. 49, 182–188 (2011).
doi: 10.1111/j.1759-6831.2011.00135.x
Taberlet, P. et al. Power and limitations of the chloroplast trn L (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14–e14 (2007).
pubmed: 17169982
doi: 10.1093/nar/gkl938
Kubešová, M., Moravcova, L., Suda, J., Jarosik, V. & Preslia, P. P. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 1, 81–96 (2010).
Aliabadian, M., Kaboli, M., Nijman, V. & Vences, M. Molecular identification of birds: performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS ONE 4, e4119 (2009).
pubmed: 19127298
pmcid: 2612741
doi: 10.1371/journal.pone.0004119
Ghimire, B. K. et al. Diversity in accessions of Panicum miliaceum L. based on agro-morphological, antioxidative, and genetic traits. Molecules 24(6), 1012. https://doi.org/10.3390/molecules24061012 (2019).
doi: 10.3390/molecules24061012
pmcid: 6470979
Zuloaga, F. O., Salariato, D. L. & Scataglini, A. Molecular phylogeny of Panicum s str (Poaceae, Panicoideae, Paniceae) and insights into its biogeography and evolution. PLoS ONE 13, 1529 (2018).
doi: 10.1371/journal.pone.0191529
Lovell, J. T. et al. The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nat. Commun. 9, 5213. https://doi.org/10.1038/s41467-018-07669-x (2018).
doi: 10.1038/s41467-018-07669-x
pubmed: 30523281
pmcid: 6283873
Suda, J., Meyerson, L. A., Leitch, I. J. & Pyšek, P. The hidden side of plant invasions: the role of genome size. New Phytol. 205, 994–1007 (2015).
pubmed: 25323486
doi: 10.1111/nph.13107
Ghahramanzadeh, R. et al. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding. Mol. Ecol. Res. 13, 21–31 (2013).
doi: 10.1111/1755-0998.12020
Li, J.-J., Xiong, C., Liu, Y., Liang, J.-S. & Zhou, X.-W. Loop-mediated isothermal amplification (LAMP): emergence as an alternative technology for herbal medicine identification. Front. Plant. Sci. 7, 1956 (2016).
pubmed: 28082999
pmcid: 5183589
doi: 10.3389/fpls.2016.01956
Ballin, N. Z., Onaindia, J. O., Jawad, H., Fernandez-Carazo, R. & Maquet, A. High-resolution melting of multiple barcode amplicons for plant species authentication. Food Control 105, 141–150 (2019).
pubmed: 31680728
pmcid: 6686639
doi: 10.1016/j.foodcont.2019.05.022
Zhu, L. et al. Short tandem repeats in plants: Genomic distribution and function prediction. Electr. J. Biotechnol. 50, 37–44 (2021).
doi: 10.1016/j.ejbt.2020.12.003
Chen, Y. et al. Identification of eight Panicum species in Riverina region of NSW using DNA sequence analysis DNA sequence analysis. In: 21st Australasian Weeds Conference. ‘Weed Biosecurity - Protecting our Future’ (2018).
White, T. J., Bruns, T., Lee, S., to, J. T. P. P. A. G.1990. in PCR Protocols A Guide to Methods and Applications (eds. M Innis, D. G. J. S. & White, T.) 315–322 (1990).
Ford, C. S. et al. Selection of candidate coding DNA barcoding regions for use on land plants. Bot. J. Linn. Soc. 159, 1–11 (2009).
doi: 10.1111/j.1095-8339.2008.00938.x
Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant. Mol. Biol. 17, 1105–1109 (1991).
pubmed: 1932684
doi: 10.1007/BF00037152
Zhu, X., Meyer, L., Gopurenko, D. & Weston, L. A. Selection of DNA barcoding regions for identification and genetic analysis of two Echium invaders in Australia: E. plantagineum and E. vulgare. in (ed. Baker, M.) 396–400 (2014).
Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
pubmed: 22543367
pmcid: 3371832
doi: 10.1093/bioinformatics/bts199
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904
doi: 10.1093/molbev/msw054
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
pubmed: 11524383
doi: 10.1093/bioinformatics/17.8.754
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).
pubmed: 22847109
pmcid: 4594756
doi: 10.1038/nmeth.2109
Loureiro, J., Rodriguez, E., Dolezel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 100, 875–888 (2007).
pubmed: 17684025
pmcid: 2749623
doi: 10.1093/aob/mcm152
Zhu, X. et al. Ecology and genetics affect relative invasion success of two Echium species in southern Australia. Sci. Rep. 7, 42792 (2017).
pubmed: 28211478
pmcid: 5314367
doi: 10.1038/srep42792