Clustered mutations in the GRIK2 kainate receptor subunit gene underlie diverse neurodevelopmental disorders.
Adolescent
Adult
Alleles
Brain
/ diagnostic imaging
Child
Child, Preschool
Developmental Disabilities
/ diagnostic imaging
Epilepsy
/ diagnostic imaging
Evoked Potentials
/ physiology
Gene Expression Regulation, Developmental
Genetic Association Studies
Heterozygote
Homozygote
Humans
Intellectual Disability
/ diagnostic imaging
Ion Channel Gating
Male
Models, Molecular
Mutation
Neurons
/ metabolism
Protein Conformation
Receptors, Kainic Acid
/ chemistry
GluK2 Kainate Receptor
GluK2
ataxia
channel gating
electrophysiology
epilepsy
glutamate receptor
intellectual disability
white matter abnormalities
whole-exome sequencing
Journal
American journal of human genetics
ISSN: 1537-6605
Titre abrégé: Am J Hum Genet
Pays: United States
ID NLM: 0370475
Informations de publication
Date de publication:
02 09 2021
02 09 2021
Historique:
received:
06
04
2021
accepted:
15
07
2021
pubmed:
11
8
2021
medline:
16
9
2021
entrez:
10
8
2021
Statut:
ppublish
Résumé
Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.
Identifiants
pubmed: 34375587
pii: S0002-9297(21)00275-5
doi: 10.1016/j.ajhg.2021.07.007
pmc: PMC8456161
pii:
doi:
Substances chimiques
Receptors, Kainic Acid
0
Types de publication
Case Reports
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1692-1709Subventions
Organisme : NINDS NIH HHS
ID : R00 NS089858
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS105502
Pays : United States
Commentaires et corrections
Type : ErratumIn
Informations de copyright
Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The authors declare no competing interests.
Références
J Biol Chem. 2000 Mar 24;275(12):8475-9
pubmed: 10722683
Elife. 2020 Mar 23;9:
pubmed: 32202495
J Neurosci. 1993 Aug;13(8):3582-98
pubmed: 8393486
Clin Genet. 2015 Mar;87(3):293-5
pubmed: 25039795
Genet Med. 2016 Jul;18(7):696-704
pubmed: 26633542
Brain. 2018 Mar 1;141(3):698-712
pubmed: 29365063
J Neurosci. 2013 Nov 13;33(46):18298-310
pubmed: 24227739
Nat Methods. 2010 Apr;7(4):248-9
pubmed: 20354512
J Neurosci. 2005 May 4;25(18):4473-84
pubmed: 15872094
Nature. 1997 Aug 21;388(6644):769-73
pubmed: 9285588
Curr Opin Struct Biol. 2016 Dec;41:119-127
pubmed: 27454049
Neurol Genet. 2017 Jan 31;3(1):e129
pubmed: 28180184
Hippocampus. 2014 Sep;24(9):1059-69
pubmed: 24753134
Nat Commun. 2019 Jul 12;10(1):3094
pubmed: 31300657
Science. 2014 Aug 29;345(6200):1021-6
pubmed: 25103405
J Neurosci. 2017 Mar 22;37(12):3352-3363
pubmed: 28235897
JAMA. 2020 Jun 23;323(24):2503-2511
pubmed: 32573669
Nat Neurosci. 2017 Aug;20(8):1043-1051
pubmed: 28628100
J Physiol. 2014 Apr 1;592(7):1457-77
pubmed: 24396054
J Anat. 2007 Jun;210(6):693-702
pubmed: 17504270
Mol Genet Metab. 2015 Apr;114(4):501-515
pubmed: 25655951
Nature. 2020 May;581(7809):434-443
pubmed: 32461654
Hum Mol Genet. 2017 Oct 15;26(20):3869-3882
pubmed: 29016847
J Neurosci. 2007 Jul 18;27(29):7684-95
pubmed: 17634363
Sci Rep. 2019 Dec 16;9(1):19215
pubmed: 31844109
J Neurosci. 2007 Sep 26;27(39):10423-33
pubmed: 17898214
PLoS One. 2016 Aug 04;11(8):e0160519
pubmed: 27490490
Nature. 2016 Aug 17;536(7616):285-91
pubmed: 27535533
Neuron. 1994 Jul;13(1):131-47
pubmed: 7519023
Neuron. 1995 Aug;15(2):427-34
pubmed: 7646894
J Neurosci. 2019 May 8;39(19):3611-3626
pubmed: 30846615
Neuron. 2006 May 4;50(3):415-29
pubmed: 16675396
Neuron. 2002 May 16;34(4):589-98
pubmed: 12062042
Mol Psychiatry. 2002;7(3):302-10
pubmed: 11920157
J Neurosci. 2012 Dec 5;32(49):17882-93
pubmed: 23223307
Pharmacol Rev. 2010 Sep;62(3):405-96
pubmed: 20716669
Nat Neurosci. 2000 Apr;3(4):315-22
pubmed: 10725919
J Neurosci. 2007 Sep 5;27(36):9736-41
pubmed: 17804634
J Neurosci. 2003 Jan 15;23(2):422-9
pubmed: 12533602
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Neuron. 1989 Oct;3(4):413-26
pubmed: 2577128
Am J Med Genet B Neuropsychiatr Genet. 2004 Nov 15;131B(1):48-50
pubmed: 15389769
Am J Hum Genet. 2007 Oct;81(4):792-8
pubmed: 17847003
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894
pubmed: 30371827
J Neurosci. 2004 May 26;24(21):4941-51
pubmed: 15163686
Neuroscience. 2021 Feb 21;456:17-26
pubmed: 31866560
Biochemistry. 2018 Jan 23;57(3):267-276
pubmed: 29037031
J Physiol. 2012 May 15;590(10):2217-23
pubmed: 22431337
Hum Mutat. 2015 Oct;36(10):928-30
pubmed: 26220891
Am J Hum Genet. 2017 Dec 7;101(6):1013-1020
pubmed: 29220673
Trends Neurosci. 2011 Mar;34(3):154-63
pubmed: 21256604
Vis Neurosci. 2002 Sep-Oct;19(5):681-92
pubmed: 12507334
Curr Opin Neurobiol. 2007 Jun;17(3):289-97
pubmed: 17475474
J Neurosci. 2011 Nov 23;31(47):17113-22
pubmed: 22114280
J Neurosci. 2006 Mar 22;26(12):3220-8
pubmed: 16554473
Nat Rev Neurosci. 2012 Oct;13(10):675-86
pubmed: 22948074
Neuron. 1992 Apr;8(4):775-85
pubmed: 1373632
Nature. 2009 Dec 10;462(7274):745-56
pubmed: 19946266
J Physiol. 2004 Nov 15;561(Pt 1):27-37
pubmed: 15358807
F1000Res. 2019 Nov 20;8:
pubmed: 31807283
Hum Genet. 2012 Apr;131(4):565-79
pubmed: 21996756
Nature. 2016 Sep 22;537(7621):567-571
pubmed: 27580033