Magnetic beads-assisted fluorescence aptasensing approach based on dual DNA tweezers for detection of ochratoxin A and fumonisin B


Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Nov 2021
Historique:
received: 18 06 2021
accepted: 24 08 2021
revised: 21 08 2021
pubmed: 7 9 2021
medline: 22 12 2021
entrez: 6 9 2021
Statut: ppublish

Résumé

A magnetic beads (MBs)-assisted fluorescence aptasensing approach based on dual DNA tweezers and magnetic separation was established for the detection of ochratoxin A (OTA) and fumonisin B

Identifiants

pubmed: 34487192
doi: 10.1007/s00216-021-03635-7
pii: 10.1007/s00216-021-03635-7
doi:

Substances chimiques

Aptamers, Nucleotide 0
Fumonisins 0
Ochratoxins 0
ochratoxin A 1779SX6LUY
fumonisin B1 3ZZM97XZ32

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6677-6685

Subventions

Organisme : Innovative Funds Plan of Henan University of Technology
ID : 2020ZKCJ14
Organisme : Key Scientific and Technological Project of Henan Province
ID : 212102310001

Informations de copyright

© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Zhang LL, Zhang ZY, Tian Y, Cui MH, Huang BB, Luo T, Zhang SF, Wang HJ. Rapid, simultaneous detection of mycotoxins with smartphone recognition-based immune microspheres. Anal Bioanal Chem. 2021;413:3683–93. https://doi.org/10.1007/s00216-021-03316-5 .
doi: 10.1007/s00216-021-03316-5 pubmed: 33825917
Yang MY, Cui MH, Wang WX, Yang YD, Chang J, Hao JY, Wang HJ. Background-free upconversion-encoded microspheres for mycotoxin detection based on a rapid visualization method. Anal Bioanal Chem. 2020;412:81–91. https://doi.org/10.1007/s00216-019-02206-1 .
doi: 10.1007/s00216-019-02206-1 pubmed: 31953713
Alkadri D, Rubert J, Prodi A, Pisi A, Manes J, Soler C. Natural co-occurrence of mycotoxins in wheat grains from Italy and Syria. Food Chem. 2014;157:111–8. https://doi.org/10.1016/j.foodchem.2014.01.052 .
doi: 10.1016/j.foodchem.2014.01.052 pubmed: 24679759
Yang X, Gao J, Liu Q, Yang DJ. Co-occurrence of mycotoxins in maize and maize-derived food in China and estimation of dietary intake. Food Addit Contam B. 2019;12:124–34. https://doi.org/10.1080/19393210.2019.1570976 .
doi: 10.1080/19393210.2019.1570976
Oplatowska-Stachowiak M, Haughey SA, Chevallier OP, Galvin-King P, Campbell K, Magowan E, Adam G, Berthiller F, Krska R, Elliott CT. Determination of the mycotoxin content in distiller’s dried frain with solubles using a multianalyte UHPLC-MS/MS method. J Agric Food Chem. 2015;63:9441–51. https://doi.org/10.1021/acs.jafc.5b03844 .
doi: 10.1021/acs.jafc.5b03844 pubmed: 26449927
Klaric MK, Rumora L, Ljubanovic D, Pepeljnjak S. Cytotoxicity and apoptosis induced by fumonisin B-1, beauvericin and ochratoxin A in porcine kidney PK15 cells: effects of individual and combined treatment. Arch Toxicol. 2008;82:247–55. https://doi.org/10.1007/s00204-007-0245-y .
doi: 10.1007/s00204-007-0245-y pubmed: 17879085
Creppy EE, Chiarappa P, Baudrimont P, Moukha S, Carratu MR. Synergistic effects of fumonisin B-1 and ochratoxin A: are in vitro cytotoxicity data predictive of in vivo acute toxicity? Toxicol. 2004;201:115–23. https://doi.org/10.1016/j.tox.2004.04.008 .
doi: 10.1016/j.tox.2004.04.008
Mwanza M, Kametler L, Bonai A, Rajli V, Kovacs M, Dutton MF. The cytotoxic effect of fumonisin B
doi: 10.1007/s12550-009-0033-z pubmed: 23605153
Wang HY, Wei YJ, Xie Y, Yan C, Du HZ, Li ZN. Ochratoxin A and fumonisin B-1 exhibit synergistic cytotoxic effects by inducing apoptosis on rat liver cells. Toxicon. 2020;181:19–27. https://doi.org/10.1016/j.toxicon.2020.04.094 .
doi: 10.1016/j.toxicon.2020.04.094 pubmed: 32325062
Lee HJ, Ryu D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. J Agric Food Chem. 2017;65:7034–51. https://doi.org/10.1021/acs.jafc.6b04847 .
doi: 10.1021/acs.jafc.6b04847 pubmed: 27976878
Pellicer-Castell E, Belenguer-Sapina C, Borras VJ, Amoros P, El Haskouri J, Herrero-Martinez JM, Mauri-Aucejo AR. Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS. Microchim Acta. 2019;186:792. https://doi.org/10.1007/s00604-019-3958-8 .
doi: 10.1007/s00604-019-3958-8
Stadler D, Sulyok M, Schuhmacher R, Berthiller F, Krska R. The contribution of lot-to-lot variation to the measurement uncertainty of an LC-MS-based multi-mycotoxin assay. Anal Bioanal Chem. 2018;410:4409–18. https://doi.org/10.1007/s00216-018-1096-5 .
doi: 10.1007/s00216-018-1096-5 pubmed: 29713754 pmcid: 6021480
Qie ZW, Yan WL, Gao ZC, Meng W, Xiao R, Wang SQ. An anti-BSA antibody-based immunochromatographic assay for chloramphenicol and aflatoxin M-1 by using carboxy-modified CdSe/ZnS core-shell nanoparticles as label. Microchim Acta. 2020;187:10. https://doi.org/10.1007/s00604-019-4009-1 .
doi: 10.1007/s00604-019-4009-1
Ediage EN, Mavungu JDD, Goryacheva IY, Peteghem CV, Saeger SD. Multiplex flow-through immunoassay formats for screening of mycotoxins in a variety of food matrices. Anal Bioanal Chem. 2012;403:265–78. https://doi.org/10.1007/s00216-012-5803-3 .
doi: 10.1007/s00216-012-5803-3 pubmed: 22392371
Lin BX, Yu Y, Cao YJ, Guo ML, Zhu DB, Dai JX, Zheng MS. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens Bioelectron. 2018;100:482–9. https://doi.org/10.1016/j.bios.2017.09.028 .
doi: 10.1016/j.bios.2017.09.028 pubmed: 28965053
Bhardwaj H, Marquette CA, Dutta P, Rajesh SG. Integrated graphene quantum dot decorated functionalized nanosheet biosensor for mycotoxin detection. Anal Bioanal Chem. 2020;412:7029–41. https://doi.org/10.1007/s00216-020-02840-0 .
doi: 10.1007/s00216-020-02840-0 pubmed: 32797305
Bonel L, Vidal JC, Duato P, Castillo JR. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens Bioelectron. 2011;26:3254–9. https://doi.org/10.1016/j.bios.2010.12.036 .
doi: 10.1016/j.bios.2010.12.036 pubmed: 21256729
He DY, Wu ZZ, Cui B, Jin ZY, Xu EB. A fluorometric method for aptamer based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B-1 making use of gold nanorods and upconversion nanoparticles. Microchim Acta. 2020;187:254. https://doi.org/10.1007/s00604-020-04236-4 .
doi: 10.1007/s00604-020-04236-4
He DY, Wu ZZ, Cui B, Xu EB. Aptamer and gold nanorod-based fumonisin B
doi: 10.1007/s00604-020-4192-0
Shi JR, Li GY, Cui YR, Zhang Y, Liu DH, Shi Y, He H. Surface-imprinted beta-cyclodextrin-functionalized carbon nitride nanosheets for fluorometric determination of sterigmatomycin. Microchim Acta. 2020;186:808. https://doi.org/10.1007/s00604-019-3867-x .
doi: 10.1007/s00604-019-3867-x
Taghdisi SM, Danesh NM, Beheshti HR, Ramezani M, Abnous K. A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin A. Nanoscale. 2016;8:3439–46. https://doi.org/10.1039/c5nr08234j .
doi: 10.1039/c5nr08234j pubmed: 26791437
Maragos CM. Recent advances in the development of novel materials for mycotoxin analysis. Anal Bioanal Chem. 2009;395:1205–13. https://doi.org/10.1007/s00216-009-2728-6 .
doi: 10.1007/s00216-009-2728-6 pubmed: 19300984
Li L, Chen HP, Lv XL, Wang M, Jiang XZ, Jiang YF, Wang HY, Zhao YF, Xia LR. Paper-based immune-affinity arrays for detection of multiple mycotoxins in cereals. Anal Bioanal Chem. 2018;410:2253–62. https://doi.org/10.1007/s00216-018-0895-z .
doi: 10.1007/s00216-018-0895-z pubmed: 29411083
Jiang LP, Peng JD, Yuan R, Chai YQ, Yuan YL, Bai LJ, Wang Y. An aptasensing platform for simultaneous detection of multiple analytes based on the amplification of exonuclease-catalyzed target recycling and DNA concatemers. Analyst. 2013;138:4818–22. https://doi.org/10.1039/c3an00757j .
doi: 10.1039/c3an00757j pubmed: 23817314
Xiong ZW, Wang Q, Xie YJ, Li N, Yun W, Yang LZ. Simultaneous detection of aflatoxin B
doi: 10.1016/j.foodchem.2020.128122 pubmed: 33091999
Wu G, Xiong ZW, Oh SH, Ren YR, Wang Q, Yang LZ. Two-color, ultra-sensitive fluorescent strategy for ochratoxin A detection based on hybridization chain reaction and DNA tweezers. Food Chem. 2021;356:129663. https://doi.org/10.1016/j.foodchem.2021.129663 .
doi: 10.1016/j.foodchem.2021.129663 pubmed: 33812184
Wu G, Li YT, Zhang JF, Yun W, Xiong ZW, Yang LZ. Simultaneous and ultra-sensitive detection of Cu
doi: 10.1016/j.foodchem.2021.129835 pubmed: 33933951
Cruz-Aguado JA, Penner G. Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem. 2008;56:10456–61. https://doi.org/10.1021/jf801957h .
doi: 10.1021/jf801957h pubmed: 18983163
Shi ZY, Zheng YT, Zhang HB, He CH, Wu WD, Zhang HB. DNA electrochemical aptasensor for detecting fumonisin B
doi: 10.1002/elan.201400504
McKeague M, Bradley CR, Girolamo AD, Visconti A, Miller JD, Derosa MC. Screening and initial binding assessment of fumonisin B
doi: 10.3390/ijms11124864 pubmed: 21614178 pmcid: 3100853
Zhao Y, Liu R, Sun W, Lv L, Guo Z. Ochratoxin A detection platform based on signal amplification by Exonuclease III and fluorescence quenching by gold nanoparticles. Sensors Actuators B Chem. 2018;255:1640–5. https://doi.org/10.1016/j.snb.2017.08.176 .
doi: 10.1016/j.snb.2017.08.176
Lv L, Li D, Cui C, Zhao Y, Guo Z. Nuclease-aided target recycling signal amplification strategy for ochratoxin. A monitoring. Biosens Bioelectron. 2017;87:136–41. https://doi.org/10.1016/j.bios.2016.08.024 .
doi: 10.1016/j.bios.2016.08.024 pubmed: 27542086
Oswald S, Karsunke X, Dietrich R, Martlbauer E, Niessner R, Knopp D. Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal Bioanal Chem. 2013;405:6405–15. https://doi.org/10.1007/s00216-013-6920-3 .
doi: 10.1007/s00216-013-6920-3 pubmed: 23620369
Hao N, Lu JW, Zhou Z, Hua R, Wang K. A pH-resolved colorimetric biosensor for simultaneous multiple target detection. ACS Sens. 2018;3:2159–65. https://doi.org/10.1021/acssensors.8b00717 .
doi: 10.1021/acssensors.8b00717 pubmed: 30221513
Wang CQ, Qian J, An KQ, Huang XY, Zhao LF, Liu Q, Hao N, Wang K. Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Biosens Bioelectron. 2017;89:802–9. https://doi.org/10.1016/j.bios.2016.10.010 .
doi: 10.1016/j.bios.2016.10.010 pubmed: 27816583
Wu SJ, Duan N, Ma XY, Xia Y, Wang HG, Wang ZP, Zhang Q. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem. 2012;84:6263–70. https://doi.org/10.1021/ac301534w .
doi: 10.1021/ac301534w pubmed: 22816786
Molinero-Fernández Á, Moreno-Guzmán M, Ángel López MA, Escarpa A. Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors. Anal Chem. 2017;89:10850–7. https://doi.org/10.1021/acs.analchem.7b02440 .
doi: 10.1021/acs.analchem.7b02440 pubmed: 28889736

Auteurs

Chenling Qu (C)

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China. quchenling82@163.com.

Luyang Zhao (L)

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.

Xing He (X)

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.

Songcheng Yu (S)

College of Public Health, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Min Wei (M)

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China. wei_min80@163.com.

Articles similaires

Zea mays Triticum China Seasons Crops, Agricultural
Zea mays Ozone Mycotoxins Food Safety Food Contamination
Protoporphyrins Photochemotherapy Humans Aminolevulinic Acid Chlorophyllides

Classifications MeSH