Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
07 09 2021
Historique:
received: 11 06 2021
accepted: 13 08 2021
entrez: 8 9 2021
pubmed: 9 9 2021
medline: 15 12 2021
Statut: epublish

Résumé

Long-read technologies hold the promise to obtain more complete genome assemblies and to make them easier. Coupled with long-range technologies, they can reveal the architecture of complex regions, like centromeres or rDNA clusters. These technologies also make it possible to know the complete organization of chromosomes, which remained complicated before even when using genetic maps. However, generating a gapless and telomere-to-telomere assembly is still not trivial, and requires a combination of several technologies and the choice of suitable software. Here, we report a chromosome-scale assembly of a banana genome (Musa acuminata) generated using Oxford Nanopore long-reads. We generated a genome coverage of 177X from a single PromethION flowcell with near 17X with reads longer than 75 kbp. From the 11 chromosomes, 5 were entirely reconstructed in a single contig from telomere to telomere, revealing for the first time the content of complex regions like centromeres or clusters of paralogous genes.

Identifiants

pubmed: 34493830
doi: 10.1038/s42003-021-02559-3
pii: 10.1038/s42003-021-02559-3
pmc: PMC8423783
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1047

Subventions

Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-LABX-0001-01
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-10-INBS-09-08

Informations de copyright

© 2021. The Author(s).

Références

Michael, T. P. & VanBuren, R. Building near-complete plant genomes. Curr. Opin. Plant Biol. 54, 26–33 (2020).
pubmed: 31981929 doi: 10.1016/j.pbi.2019.12.009
Rousseau-Gueutin, M. et al. Long-read assembly of the Brassica napus reference genome Darmor-bzh. GigaScience 9, giaa137 (2020).
Zhang, W. et al. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nat. Commun. 11, 3719 (2020).
pubmed: 32709943 pmcid: 7381669 doi: 10.1038/s41467-020-17498-6
Schmidt, M. H.-W. et al. De novo assembly of a New Solanum pennellii accession using nanopore sequencing. Plant Cell 29, 2336–2348 (2017).
pubmed: 29025960 pmcid: 5774570 doi: 10.1105/tpc.17.00521
Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020).
pubmed: 32663838 pmcid: 7484160 doi: 10.1038/s41586-020-2547-7
Martin, G. et al. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant J. 102, 1008–1025 (2020).
pubmed: 31930580 pmcid: 7317953 doi: 10.1111/tpj.14683
Němečková, A. et al. Molecular and cytogenetic study of East African Highland Banana. Front. Plant Sci. 9, 1371(2018).
Langhe, E. D., Vrydaghs, L., Maret, P., de, Perrier, X. & Denham, T. Why bananas matter: an introduction to the history of banana domestication. Ethnobot. Res. Appl 7, 165–177 (2009).
doi: 10.17348/era.7.0.165-177
D’Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).
pubmed: 22801500 doi: 10.1038/nature11241
Martin, G. et al. Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics 17, 243 (2016).
pubmed: 26984673 pmcid: 4793746 doi: 10.1186/s12864-016-2579-4
Chen, Y. et al. Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat. Commun. 12, 60 (2021).
pubmed: 33397900 pmcid: 7782737 doi: 10.1038/s41467-020-20236-7
Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).
pubmed: 28100585 pmcid: 5411768 doi: 10.1101/gr.214270.116
nanoporetech/medaka. (Oxford Nanopore Technologies, 2021).
Aury, J.-M. & Istace, B. Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genom. Bioinform. 3, lqab034 (2021).
Istace, B., Belser, C. & Aury, J.-M. BiSCoT: improving large eukaryotic genome assemblies with optical maps. PeerJ 8, e10150 (2020).
pubmed: 33194395 pmcid: 7649008 doi: 10.7717/peerj.10150
Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).
pubmed: 32928274 pmcid: 7488777 doi: 10.1186/s13059-020-02134-9
Čížková, J. et al. Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.). PLoS One 8, e54808 (2013).
pubmed: 23372772 pmcid: 3553004 doi: 10.1371/journal.pone.0054808
Tran, T. D. et al. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea.Plant J. Cell Mol. Biol. 84, 1087–1099 (2015).
doi: 10.1111/tpj.13058
Neumann, P. et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob. DNA 2, 4 (2011).
pubmed: 21371312 pmcid: 3059260 doi: 10.1186/1759-8753-2-4
Panchy, N., Lehti-Shiu, M. & Shiu, S.-H. Evolution of gene duplication in plants. Plant Physiol. 171, 2294–2316 (2016).
pubmed: 27288366 pmcid: 4972278 doi: 10.1104/pp.16.00523
Del Terra, L. et al. Functional characterization of three Coffea arabica L. monoterpene synthases: Insights into the enzymatic machinery of coffee aroma. Phytochemistry 89, 6–14 (2013).
pubmed: 23398891 doi: 10.1016/j.phytochem.2013.01.005
Jiang, S.-Y., Jin, J., Sarojam, R. & Ramachandran, S. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol. Evol. 11, 2078–2098 (2019).
pubmed: 31304957 pmcid: 6681836 doi: 10.1093/gbe/evz142
Falara, V. et al. The tomato terpene synthase gene family. Plant Physiol. 157, 770–789 (2011).
pubmed: 21813655 pmcid: 3192577 doi: 10.1104/pp.111.179648
Martin, D. M. et al. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol. 10, 226 (2010).
pubmed: 20964856 pmcid: 3017849 doi: 10.1186/1471-2229-10-226
Wersch, Svan & Li, X. Stronger when together: clustering of plant NLR disease resistance genes. Trends Plant Sci. 24, 688–699 (2019).
pubmed: 31266697 doi: 10.1016/j.tplants.2019.05.005
Steuernagel, B. et al. The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 183, 468–482 (2020).
pubmed: 32184345 pmcid: 7271791 doi: 10.1104/pp.19.01273
Belser, C. et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 4, 879–887 (2018).
pubmed: 30390080 doi: 10.1038/s41477-018-0289-4
Wang, Z. et al. Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat. Plants 5, 810–821 (2019).
pubmed: 31308504 pmcid: 6784884 doi: 10.1038/s41477-019-0452-6
Lang, D. et al. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. GigaScience 9, giaa123 (2020).
Yang, X. et al. Amplification and adaptation of centromeric repeats in polyploid switchgrass species. N. Phytol. 218, 1645–1657 (2018).
doi: 10.1111/nph.15098
Miga, K. H. Centromere studies in the era of ‘telomere-to-telomere’ genomics. Exp. Cell Res. 394, 112127 (2020).
pubmed: 32504677 pmcid: 8284601 doi: 10.1016/j.yexcr.2020.112127
Comai, L., Maheshwari, S. & Marimuthu, M. P. A. Plant centromeres. Curr. Opin. Plant Biol. 36, 158–167 (2017).
pubmed: 28411416 doi: 10.1016/j.pbi.2017.03.003
Bellaire, L., de, L., de, Fouré, E., Abadie, C. & Carlier, J. Black leaf streak disease is challenging the banana industry. Fruits 65, 327–342 (2010).
doi: 10.1051/fruits/2010034
Kema, G. H. J. et al. Editorial: Fusarium wilt of banana, a recurring threat to global banana production. Front. Plant Sci. 11, 628888 (2021).
Ahmad, F. et al. Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theor. Appl. Genet. 133, 3409–3418 (2020).
pubmed: 32918589 pmcid: 7567712 doi: 10.1007/s00122-020-03677-y
Gawel, N. J. & Jarret, R. L. A modified CTAB DNA extraction procedure forMusa andIpomoea. Plant Mol. Biol. Rep. 9, 262–266 (1991).
doi: 10.1007/BF02672076
Safár, J. et al. Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome 47, 1182–1191 (2004).
pubmed: 15644977 doi: 10.1139/g04-062
Šimková, H., Číhalíková, J., Vrána, J., Lysák, M. A. & Doležel, J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant. 46, 369–373 (2003).
doi: 10.1023/A:1024322001786
Engelen S., Aury J. M. fastxtend https://www.genoscope.cns.fr/externe/fastxtend/ .
Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).
pubmed: 18227114 doi: 10.1093/bioinformatics/btn025
Alberti, A. et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci. Data 4, 170093 (2017).
pubmed: 28763055 pmcid: 5538240 doi: 10.1038/sdata.2017.93
rrwick/Filtlong. quality filtering tool for long reads https://github.com/rrwick/Filtlong .
Liu, H., Wu, S., Li, A. & Ruan, J. SMARTdenovo: a de novo assembler using long noisy reads. Gigabyte 2021, 1–9 (2021).
doi: 10.46471/gigabyte.15
Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).
pubmed: 31819265 doi: 10.1038/s41592-019-0669-3
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).
doi: 10.1038/s41587-019-0072-8 pubmed: 30936562
Miller, J. R. et al. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24, 2818–2824 (2008).
pubmed: 18952627 pmcid: 2639302 doi: 10.1093/bioinformatics/btn548
Droc, G. et al. The banana genome hub. Database 2013, bat035 (2013).
SouthGreenPlatform/scaffhunter. (South Green Bioinformatics platform, 2019).
Martin, G., Baurens, F.-C., Cardi, C., Aury, J.-M. & D’Hont, A. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 8, e67350 (2013).
pubmed: 23840670 pmcid: 3696114 doi: 10.1371/journal.pone.0067350
Fang, Y. et al. A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS One 7, e37164 (2012).
pubmed: 22655034 pmcid: 3360038 doi: 10.1371/journal.pone.0037164
Krumsiek, J., Arnold, R. & Rattei, T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028 (2007).
pubmed: 17309896 doi: 10.1093/bioinformatics/btm039
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).
pubmed: 9862982 pmcid: 148217 doi: 10.1093/nar/27.2.573
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker http://repeatmasker.org/ .
Bao, W., Kojima, K. K. & Kohany, O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).
pubmed: 26045719 pmcid: 4455052 doi: 10.1186/s13100-015-0041-9
Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
pubmed: 11932250 pmcid: 187518
Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988 (2004).
pubmed: 15123596 pmcid: 479130 doi: 10.1101/gr.1865504
Martin, G. et al. Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics 17, 243 (2016).
Mott, R. EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA. Comput. Appl. Biosci. CABIOS 13, 477–478 (1997).
pubmed: 9283765
Dubarry, M. et al. Gmove a tool for eukaryotic gene predictions using various evidences. F1000Research 5 (2016).
Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
pubmed: 29220515 doi: 10.1093/molbev/msx319
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).
pubmed: 17984973 doi: 10.1038/nrg2165
Nattestad, M. & Schatz, M. C. Assemblytics: a web analytics tool for the detection of variants from an assembly. Bioinformatics 32, 3021–3023 (2016).
pubmed: 27318204 pmcid: 6191160 doi: 10.1093/bioinformatics/btw369
Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
pubmed: 14759262 pmcid: 395750 doi: 10.1186/gb-2004-5-2-r12
Krzywinski, M. I. et al. Circos: an information aesthetic for comparative genomics. Genome Res. https://doi.org/10.1101/gr.092759.109 (2009).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
pubmed: 2231712 doi: 10.1016/S0022-2836(05)80360-2
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007 doi: 10.1038/nmeth.3176
Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486–488 (2008).
pubmed: 18436778 doi: 10.1126/science.1153917
Belser, C. et al. Musa acuminata DH-Pahang genome assembly: associated data. Zenodo https://doi.org/10.5281/zenodo.5120019 (2021).

Auteurs

Caroline Belser (C)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.

Franc-Christophe Baurens (FC)

CIRAD, UMR AGAP Institut, Montpellier, France.
UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

Benjamin Noel (B)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.

Guillaume Martin (G)

CIRAD, UMR AGAP Institut, Montpellier, France.
UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

Corinne Cruaud (C)

Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France.

Benjamin Istace (B)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.

Nabila Yahiaoui (N)

CIRAD, UMR AGAP Institut, Montpellier, France.
UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

Karine Labadie (K)

Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France.

Eva Hřibová (E)

Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.

Jaroslav Doležel (J)

Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.

Arnaud Lemainque (A)

Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France.

Patrick Wincker (P)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.

Angélique D'Hont (A)

CIRAD, UMR AGAP Institut, Montpellier, France.
UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

Jean-Marc Aury (JM)

Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France. jmaury@genoscope.cns.fr.

Articles similaires

Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Humans Mendelian Randomization Analysis Graves Disease Aging Genome-Wide Association Study
Genome, Plant Medicago sativa Crops, Agricultural Genomics Polyploidy

Fine mapping of a major QTL, qECQ8, for rice taste quality.

Shan Zhu, Guoping Tang, Zhou Yang et al.
1.00
Oryza Quantitative Trait Loci Taste Chromosome Mapping Phenotype

Classifications MeSH