Genome sequencing of the neotype strain CBS 554.65 reveals the MAT1-2 locus of Aspergillus niger.

ATCC 16888 Centromere Mating-type locus Mitochondrial DNA NRRL 326 Sexual development

Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
21 Sep 2021
Historique:
received: 18 02 2021
accepted: 03 09 2021
entrez: 22 9 2021
pubmed: 23 9 2021
medline: 24 9 2021
Statut: epublish

Résumé

Aspergillus niger is a ubiquitous filamentous fungus widely employed as a cell factory thanks to its abilities to produce a wide range of organic acids and enzymes. Its genome was one of the first Aspergillus genomes to be sequenced in 2007, due to its economic importance and its role as model organism to study fungal fermentation. Nowadays, the genome sequences of more than 20 A. niger strains are available. These, however, do not include the neotype strain CBS 554.65. The genome of CBS 554.65 was sequenced with PacBio. A high-quality nuclear genome sequence consisting of 17 contigs with a N50 value of 4.07 Mbp was obtained. The assembly covered all the 8 centromeric regions of the chromosomes. In addition, a complete circular mitochondrial DNA assembly was obtained. Bioinformatic analyses revealed the presence of a MAT1-2-1 gene in this genome, contrary to the most commonly used A. niger strains, such as ATCC 1015 and CBS 513.88, which contain a MAT1-1-1 gene. A nucleotide alignment showed a different orientation of the MAT1-1 locus of ATCC 1015 compared to the MAT1-2 locus of CBS 554.65, relative to conserved genes flanking the MAT locus. Within 24 newly sequenced isolates of A. niger half of them had a MAT1-1 locus and the other half a MAT1-2 locus. The genomic organization of the MAT1-2 locus in CBS 554.65 is similar to other Aspergillus species. In contrast, the region comprising the MAT1-1 locus is flipped in all sequenced strains of A. niger. This study, besides providing a high-quality genome sequence of an important A. niger strain, suggests the occurrence of genetic flipping or switching events at the MAT1-1 locus of A. niger. These results provide new insights in the mating system of A. niger and could contribute to the investigation and potential discovery of sexuality in this species long thought to be asexual.

Sections du résumé

BACKGROUND BACKGROUND
Aspergillus niger is a ubiquitous filamentous fungus widely employed as a cell factory thanks to its abilities to produce a wide range of organic acids and enzymes. Its genome was one of the first Aspergillus genomes to be sequenced in 2007, due to its economic importance and its role as model organism to study fungal fermentation. Nowadays, the genome sequences of more than 20 A. niger strains are available. These, however, do not include the neotype strain CBS 554.65.
RESULTS RESULTS
The genome of CBS 554.65 was sequenced with PacBio. A high-quality nuclear genome sequence consisting of 17 contigs with a N50 value of 4.07 Mbp was obtained. The assembly covered all the 8 centromeric regions of the chromosomes. In addition, a complete circular mitochondrial DNA assembly was obtained. Bioinformatic analyses revealed the presence of a MAT1-2-1 gene in this genome, contrary to the most commonly used A. niger strains, such as ATCC 1015 and CBS 513.88, which contain a MAT1-1-1 gene. A nucleotide alignment showed a different orientation of the MAT1-1 locus of ATCC 1015 compared to the MAT1-2 locus of CBS 554.65, relative to conserved genes flanking the MAT locus. Within 24 newly sequenced isolates of A. niger half of them had a MAT1-1 locus and the other half a MAT1-2 locus. The genomic organization of the MAT1-2 locus in CBS 554.65 is similar to other Aspergillus species. In contrast, the region comprising the MAT1-1 locus is flipped in all sequenced strains of A. niger.
CONCLUSIONS CONCLUSIONS
This study, besides providing a high-quality genome sequence of an important A. niger strain, suggests the occurrence of genetic flipping or switching events at the MAT1-1 locus of A. niger. These results provide new insights in the mating system of A. niger and could contribute to the investigation and potential discovery of sexuality in this species long thought to be asexual.

Identifiants

pubmed: 34548025
doi: 10.1186/s12864-021-07990-8
pii: 10.1186/s12864-021-07990-8
pmc: PMC8454179
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

679

Informations de copyright

© 2021. The Author(s).

Références

Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
PLoS One. 2013;8(2):e56895
pubmed: 23457637
PLoS Genet. 2017 Nov 27;13(11):e1007092
pubmed: 29176810
Biochim Biophys Acta Mol Cell Res. 2018 Jan;1865(1):117-131
pubmed: 28986220
Genetics. 2012 May;191(1):33-64
pubmed: 22555442
Fungal Genet Biol. 2020 Jun;139:103377
pubmed: 32251730
Bioinformatics. 2015 Oct 1;31(19):3210-2
pubmed: 26059717
Microbiol Mol Biol Rev. 1997 Dec;61(4):411-28
pubmed: 9409146
Appl Environ Microbiol. 2011 Aug;77(15):5270-7
pubmed: 21652743
Mycologia. 2013 Jan-Feb;105(1):71-9
pubmed: 23074177
Methods Mol Biol. 2012;835:133-50
pubmed: 22183652
Bioinformatics. 2013 Apr 15;29(8):1072-5
pubmed: 23422339
Stud Mycol. 2020 Jun 27;95:5-169
pubmed: 32855739
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Fungal Genet Biol. 2008 Sep;45(9):1292-9
pubmed: 18652906
Bioinformatics. 2018 Jul 1;34(13):i142-i150
pubmed: 29949969
Fungal Genet Biol. 2017 Nov;108:1-12
pubmed: 28889020
Mycobiology. 2016 Dec;44(4):269-276
pubmed: 28154484
J Fungi (Basel). 2018 Mar 20;4(1):
pubmed: 30152809
Nature. 2005 Dec 22;438(7071):1105-15
pubmed: 16372000
Nature. 2009 Jan 22;457(7228):471-4
pubmed: 19043401
Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268
pubmed: 31777944
Stud Mycol. 2017 Sep;88:37-135
pubmed: 28860671
Prog Mol Subcell Biol. 2017;56:85-109
pubmed: 28840234
Appl Microbiol Biotechnol. 2013 Nov;97(22):9609-20
pubmed: 24085397
Microbiol Spectr. 2017 Jun;5(3):
pubmed: 28597816
Bioinformatics. 2010 Mar 1;26(5):589-95
pubmed: 20080505
Nucleic Acids Res. 2014 Jan;42(Database issue):D26-31
pubmed: 24225321
PLoS One. 2014 Apr 15;9(4):e94857
pubmed: 24736731
FEMS Microbiol Lett. 2004 Dec 1;241(1):119-26
pubmed: 15600010
Nucleic Acids Res. 1997 Mar 1;25(5):955-64
pubmed: 9023104
Nat Biotechnol. 2007 Feb;25(2):221-31
pubmed: 17259976
FEMS Microbiol Lett. 2008 Apr;281(1):51-7
pubmed: 18318841
Microbiol Mol Biol Rev. 2010 Jun;74(2):298-340
pubmed: 20508251
Appl Microbiol Biotechnol. 2001 Sep;56(5-6):589-601
pubmed: 11601605
Mol Gen Genet. 1986 Feb;202(2):265-70
pubmed: 3010049
Stud Mycol. 2018 Sep;91:61-78
pubmed: 30425417
Genome Res. 2011 Jun;21(6):885-97
pubmed: 21543515
Appl Microbiol Biotechnol. 2002 Aug;59(4-5):426-35
pubmed: 12172605
Mycologia. 2009 May-Jun;101(3):423-9
pubmed: 19537215
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4851-8
pubmed: 25349420
Bioessays. 1990 Feb;12(2):53-9
pubmed: 2140508
J Comput Biol. 2012 May;19(5):455-77
pubmed: 22506599
Stud Mycol. 2018 Sep;91:37-59
pubmed: 30425416
Genome Res. 2004 Jul;14(7):1394-403
pubmed: 15231754
Nat Methods. 2015 Jan;12(1):59-60
pubmed: 25402007
Exp Cell Res. 2020 Apr 15;389(2):111895
pubmed: 32035948
Fungal Biol. 2021 Jun;125(6):485-494
pubmed: 34024596
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7
pubmed: 15980513
Genome Res. 2019 Jun;29(6):944-953
pubmed: 31043437
BMC Genomics. 2012 Dec 12;13:698
pubmed: 23234273
Mycologia. 2013 Sep-Oct;105(5):1153-63
pubmed: 23709489
Nucleic Acids Res. 2018 Jul 2;46(W1):W84-W88
pubmed: 29741643
Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129
pubmed: 28472432
BMC Bioinformatics. 2009 Dec 15;10:421
pubmed: 20003500
Nat Commun. 2016 Jul 04;7:12087
pubmed: 27373494
Chromosome Res. 2012 Jul;20(5):635-56
pubmed: 22752455
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70
pubmed: 20435677
Nat Genet. 2018 Dec;50(12):1688-1695
pubmed: 30349117

Auteurs

Valeria Ellena (V)

Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse, 18, Vienna, Austria.
Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a BH, 1060, Vienna, Austria.

Sjoerd J Seekles (SJ)

TiFN, P.O. Box 557, 6700, AN, Wageningen, The Netherlands.
Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333, BE, Leiden, The Netherlands.

Gabriel A Vignolle (GA)

Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a BH, 1060, Vienna, Austria.

Arthur F J Ram (AFJ)

TiFN, P.O. Box 557, 6700, AN, Wageningen, The Netherlands.
Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333, BE, Leiden, The Netherlands.

Matthias G Steiger (MG)

Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse, 18, Vienna, Austria. matthias.steiger@tuwien.ac.at.
Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a BH, 1060, Vienna, Austria. matthias.steiger@tuwien.ac.at.

Articles similaires

Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli
Genome, Plant Medicago sativa Crops, Agricultural Genomics Polyploidy

Classifications MeSH