Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors.
Animals
Basic Helix-Loop-Helix Transcription Factors
/ genetics
Cells, Cultured
Ependymoglial Cells
/ metabolism
Female
Gene Expression Regulation
Male
Mice, Inbred C57BL
Mice, Transgenic
Nerve Regeneration
Nerve Tissue Proteins
/ genetics
Neurogenesis
Phenotype
RNA-Seq
Retina
/ metabolism
Signal Transduction
Single-Cell Analysis
Muller glia
bHLH transcription factors
glia
regeneration
reprogramming
retina
Journal
Cell reports
ISSN: 2211-1247
Titre abrégé: Cell Rep
Pays: United States
ID NLM: 101573691
Informations de publication
Date de publication:
19 10 2021
19 10 2021
Historique:
received:
26
07
2021
revised:
02
09
2021
accepted:
28
09
2021
entrez:
23
10
2021
pubmed:
24
10
2021
medline:
16
2
2022
Statut:
ppublish
Résumé
Regenerative neuroscience aims to stimulate endogenous repair in the nervous system to replace neurons lost from degenerative diseases. Recently, we reported that overexpressing the transcription factor Ascl1 in Müller glia (MG) is sufficient to stimulate MG to regenerate functional neurons in the adult mouse retina. However, this process is inefficient, and only a third of the Ascl1-expressing MG generate new neurons. Here, we test whether proneural transcription factors of the Atoh1/7 class can further promote the regenerative capacity of MG. We find that the combination of Ascl1:Atoh1 is remarkably efficient at stimulating neurogenesis, even in the absence of retinal injury. Using electrophysiology and single-cell RNA sequencing (scRNA-seq), we demonstrate that Ascl1:Atoh1 generates a diversity of retinal neuron types, with the majority expressing characteristics of retinal ganglion cells. Our results provide a proof of principle that combinations of developmental transcription factors can substantially improve glial reprogramming to neurons and expand the repertoire of regenerated cell fates.
Identifiants
pubmed: 34686336
pii: S2211-1247(21)01324-3
doi: 10.1016/j.celrep.2021.109857
pmc: PMC8691131
mid: NIHMS1749766
pii:
doi:
Substances chimiques
Ascl1 protein, mouse
0
Atoh1 protein, mouse
0
Atoh7 protein, mouse
0
Basic Helix-Loop-Helix Transcription Factors
0
Nerve Tissue Proteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
109857Subventions
Organisme : NEI NIH HHS
ID : R01 EY021482
Pays : United States
Informations de copyright
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The University of Washington has applied for a patent incorporating technology partly described in this report with inventors L.T., T.A.R., and N.J. Research related to the findings in this report is currently being funded by Genentech in the lab of T.A.R. at the UW.
Références
Cell Stem Cell. 2015 Jul 2;17(1):74-88
pubmed: 26119235
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19508-13
pubmed: 19033471
J Neurosci. 2014 Oct 22;34(43):14403-19
pubmed: 25339752
Stem Cells. 2018 Mar;36(3):392-405
pubmed: 29193451
J Biol Chem. 2013 Jun 21;288(25):18429-38
pubmed: 23649630
Nat Biotechnol. 2018 Jun;36(5):411-420
pubmed: 29608179
Neuron. 2019 Sep 25;103(6):1086-1095.e5
pubmed: 31488328
Nat Rev Neurosci. 2014 Jul;15(7):431-42
pubmed: 24894585
Development. 2016 Jun 1;143(11):1874-83
pubmed: 27068106
Curr Opin Neurobiol. 2017 Feb;42:93-101
pubmed: 28025176
Methods Mol Biol. 2012;814:485-98
pubmed: 22144327
Nat Neurosci. 2019 Jun;22(6):897-908
pubmed: 31086315
Science. 2020 Nov 20;370(6519):
pubmed: 33004674
Dev Biol. 2012 May 15;365(2):395-413
pubmed: 22445509
Sci Rep. 2016 Apr 20;6:24851
pubmed: 27094545
Neuron. 2014 Apr 2;82(1):9-23
pubmed: 24698265
Cell Rep. 2020 Feb 18;30(7):2195-2208.e5
pubmed: 32075759
Brain Res Dev Brain Res. 2003 Oct 10;145(1):1-8
pubmed: 14519488
Dev Biol. 2006 Jul 15;295(2):764-78
pubmed: 16690048
Neuron. 2017 Mar 8;93(5):1110-1125.e5
pubmed: 28215559
Cell Rep. 2014 Oct 9;9(1):285-297
pubmed: 25263555
Nature. 2017 Aug 3;548(7665):103-107
pubmed: 28746305
Mol Cell Neurosci. 2013 May;54:108-20
pubmed: 23481413
Proc Natl Acad Sci U S A. 2017 May 2;114(18):E3719-E3728
pubmed: 28416692
Nat Methods. 2017 Mar;14(3):309-315
pubmed: 28114287
Cell Stem Cell. 2014 Feb 6;14(2):188-202
pubmed: 24360883
Genes Cells. 2008 Sep;13(9):915-29
pubmed: 18681894
J Neurosci. 2017 May 10;37(19):4967-4981
pubmed: 28411269
J Neurosci. 2007 Aug 8;27(32):8654-64
pubmed: 17687043
Glia. 2021 Mar;69(3):546-566
pubmed: 32965734
Nat Protoc. 2011 Feb;6(2):214-28
pubmed: 21293461
Dev Cell. 2012 Feb 14;22(2):334-47
pubmed: 22340497
J Neurosci. 2012 May 9;32(19):6699-710
pubmed: 22573692
Development. 2019 Sep 2;146(17):
pubmed: 31383796
J Neurosci. 2015 Jun 24;35(25):9336-55
pubmed: 26109658
Mol Psychiatry. 2016 Jan;21(1):49-61
pubmed: 26503761
Nat Biotechnol. 2021 Apr;39(4):510-519
pubmed: 33257861
Glia. 2014 Oct;62(10):1608-28
pubmed: 24916856
Nat Neurosci. 2001 Mar;4(3):247-52
pubmed: 11224540
J Neurosci. 2002 Nov 1;22(21):9387-98
pubmed: 12417664
Development. 2018 May 2;145(9):
pubmed: 29720483
Cell Rep. 2020 Dec 15;33(11):108507
pubmed: 33326790
Neuron. 2019 Jun 19;102(6):1111-1126.e5
pubmed: 31128945
J Neurobiol. 1994 Feb;25(2):143-55
pubmed: 7517436
Dev Dyn. 2003 Feb;226(2):211-24
pubmed: 12557200
Development. 2013 Jun;140(12):2619-31
pubmed: 23637330
Cell Rep. 2019 May 7;27(6):1637-1649.e6
pubmed: 31067451