Bioprospecting of xylanase producing fungal strains: Multilocus phylogenetic analysis and enzyme activity profiling.


Journal

Journal of basic microbiology
ISSN: 1521-4028
Titre abrégé: J Basic Microbiol
Pays: Germany
ID NLM: 8503885

Informations de publication

Date de publication:
Feb 2022
Historique:
revised: 23 10 2021
received: 06 08 2021
accepted: 31 10 2021
pubmed: 17 11 2021
medline: 3 2 2022
entrez: 16 11 2021
Statut: ppublish

Résumé

The study aims to explore potential xylanase-producing indigenous fungi isolated from soil and vegetable wastes containing plant degraded matter, reporting multilocus phylogenetic analysis and xylanase enzyme activity from selective strains. Four potential xylanolytic fungi were identified through distinct primary and secondary screening of 294 isolates obtained from the samples. Morphological characterization and multigene analysis (ITS rDNA, 18S rDNA, LSU rDNA, β-tubulin, and actin gene) confirmed them as Aspergillus sp. AUMS56, Aspergillus tubingensis AUMS60 and AUMS64, and Aspergillus fumigatus AUKEMS24; achieving crude xylanase activities (through submerged fermentation using corn cobs) of 18.9, 32.29, 30.68, and 15.82 U ml

Identifiants

pubmed: 34783043
doi: 10.1002/jobm.202100408
doi:

Substances chimiques

Endo-1,4-beta Xylanases EC 3.2.1.8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

150-161

Subventions

Organisme : Science and Engineering Research Board, India
ID : YSS/2015/002072

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

Rastogi M, Shrivastava S. Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev. 2017;80:330-340. https://doi.org/10.1016/j.rser.2017.05.225
Varghese LM, Agrawal S, Sharma D, Mandhan RP, Mahajan R. Cost-effective screening and isolation of xylano-cellulolytic positive microbes from termite gut and termitarium. 3 Biotech. 2017;7:108.
Rastogi M, Shrivastava S. Glycosyl Hydrolases and biofuel. In: Shrivastava S, editor. Industrial applications of glycoside hydrolases. Singapore: Springer; 2020. p. 167-90. https://doi.org/10.1007/978-981-15-4767-6_6
Korkmaz MN, Ozdemir SC, Uzel A. Xylanase production from marine derived Trichoderma pleuroticola 08ÇK001 strain isolated from Mediterranean coastal sediments. J Basic Microbiol. 2017;57(10):839-51. https://doi.org/10.1002/jobm.201700135
Shrivastava S. Introduction to glycoside hydrolases: Classification, identification and occurrence. In: Shrivastava S, editor. Industrial applications of glycoside hydrolases. Singapore: Springer; 2020. p. 3-84. https://doi.org/10.1007/978-981-15-4767-6_1
Dias LM, dos Santos BV, Albuquerque CJB, Baeta BEL, Pasquini D, Baffi MA. Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. J Appl Microbiol. 2018;124:708-18.
Sunkar B, Kannoju B, Bhukya B. Optimized Production of xylanase by Penicillium purpurogenum and ultrasound impact on enzyme kinetics for the production of monomeric sugars from pretreated corn cobs. Front Microbiol. 2020;11:772.
Taddia A, Brandaleze GN, Boggione MJ, Bortolato SA, Tubio G. An integrated approach to the sustainable production of xylanolytic enzymes from Aspergillus niger using agro-industrial by-products. Prep Biochem Biotechnol. 2020;50:979-1.
Bibra M, Kunreddy VR, Sani RK. Thermostable xylanase production by Geobacillus sp. strain DUSELR13, and Its application in ethanol production with lignocellulosic biomass. Microorganisms. 2018;6:93.
Teather RM, Wood PJ. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Env Microbiol. 1982;43:777-80.
Shrivastava S, Shukla P, Mukhopadhyay K. Purification and preliminary characterization of a xylanase from Thermomyces lanuginosus strain SS-8. 3 Biotech. 2011;1:255-9.
Miller GL. Use of 3, 5-dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426-8. https://doi.org/10.1021/ac60147a030
Al-Samarrai TH, Schmid J. A simple method for extraction of fungal genomic DNA. Lett Appl Microbiol. 2000;30:53-6.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547-9.
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512-26.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539-42.
Rambaut A. FigTree v1.4.2. 2012. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 21 August 2020.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-75.
Shrivastava S, Shukla P, Deepalakshmi PD, Mukhopadhyay K. Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material. World J Microbiol Biotechnol. 2013;29:2407-15.
Knob A, Fortkamp D, Prolo T, Izidoro SC, Almeida JM. Agro-residues as alternative for xylanase production by filamentous fungi. BioResources. 2014;9:5738-73. https://doi.org/10.15376/biores.9.3.5738-5773
Lin C, Shen Z, Qin W. Characterization of xylanase and cellulase produced by a newly isolated Aspergillus fumigatus N2 and its efficient saccharification of Barley straw. Appl Biochem Biotechnol. 2017;182:559-69.
Singh A, Sharma D, Varghese LM, Mahajan R. Fast flow rate processes for purification of alkaline xylanase isoforms from Bacillus pumilus AJK and their biochemical characterization for industrial application purposes. Biotechnol Prog. 2020;36:e2898.
Bandikari R, Poondla V, Obulam VSR. Enhanced production of xylanase by solid state fermentation using Trichoderma koningii isolate: effect of pretreated agro-residues. 3 Biotech. 2014;4:655-64. https://doi.org/10.1007/s13205-014-0239-4
de Alencar Guimaraes NC, Sorgatto M, Peixoto-Nogueira Sde C, Betini JH, Zanoelo FF, Marques MR, et al. Bioprocess and biotecnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract. SpringerPlus. 2013;2:380.
Chen Z, Liu Y, Zaky AA, Liu L, Chen Y, Li S, et al. Characterization of a novel xylanase from Aspergillus flavus with the unique properties in production of xylooligosaccharides. J Basic Microbiol. 2019;59:351-8.
Chen Z, Zaky AA, Liu Y, Chen Y, Liu L, Li S, et al. Purification and characterization of a new xylanase with excellent stability from Aspergillus flavus and its application in hydrolyzing pretreated corncobs. Protein Expr Purif. 2019;154:91-7.
Sharma S, Sharma V, Nargotra P, Bajaj BK. Process desired functional attributes of an endoxylanase of GH10 family from a new strain of Aspergillus terreus S9. Int J Biol Macromol. 2018;115:663-71.
Mathibe BN, Malgas S, Radosavljevic L, Kumar V, Shukla P, Pletschke BI. Tryptic mapping based structural insights of endo-1, 4-β-Xylanase from Thermomyces lanuginosus VAPS-24. Indian J Microbiol. 2020;60:392-5. https://doi.org/10.1007/s12088-020-00879-2
Walia A, Guleria S, Mehta P, Chauhan A, Parkash J. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. 2017;7:11.
Pasin TM, Salgado JCS, Scarcella ASdA, Oliveira TBd, Lucas RCd, Cereia M, et al. A halotolerant endo-1,4-β-xylanase from Aspergillus clavatus with potential application for agroindustrial residues saccharification. Appl Biochem Biotechnol. 2020;191:1111-26.
Wang J, Chen X, Chio C, Yang C, Su E, Jin Y, et al. Delignification overmatches hemicellulose removal for improving hydrolysis of wheat straw using the enzyme cocktail from Aspergillus niger. Bioresour Technol. 2019;274:459-67.
dos Santos JA, Vieira J, Videira A, Meirelles LA, Rodrigues A, Taniwaki MH, et al. Marine-derived fungus Aspergillus cf. tubingensis LAMAI 31: a new genetic resource for xylanase production. AMB Express. 2016;6:25.
Bhardwaj N, Kumar B, Agarwal K, Chaturvedi V, Verma P. Purification and characterization of a thermo-acid/alkali stable xylanases from Aspergillus flavus LC1 and its application in xylo-oligosaccharides production from lignocellulosic agricultural wastes. Int J Biol Macromol. 2019;122:1191-202.
Sanjivkumar M, Silambarasan T, Balagurunathan R, Immanuel G. Biosynthesis, molecular modeling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy. Int J Biol Macromol. 2018;118:195-208.
Zhuo R, Yu H, Qin X, Ni H, Jiang Z, Ma F, et al. Heterologous expression and characterization of a xylanase and xylosidase from white rot fungi and their application in synergistic hydrolysis of lignocellulose. Chemosphere. 2018;212:24-33.
Tu T, Li X, Meng K, Bai Y, Wang Y, Wang Z, et al. A GH51 α-L-arabinofuranosidase from Talaromyces leycettanus strain JCM12802 that selectively drives synergistic lignocellulose hydrolysis. Microb Cell Fact. 2019;18:138.

Auteurs

Meenal Rastogi (M)

Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.

Smriti Shrivastava (S)

Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India.

Pratyoosh Shukla (P)

School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH