The Archaeal Transcription Termination Factor aCPSF1 is a Robust Phylogenetic Marker for Archaeal Taxonomy.
aCPSF1
archaeal taxonomy
phylogenetic marker
phylogenomics
transcription termination factor
Journal
Microbiology spectrum
ISSN: 2165-0497
Titre abrégé: Microbiol Spectr
Pays: United States
ID NLM: 101634614
Informations de publication
Date de publication:
22 12 2021
22 12 2021
Historique:
pubmed:
9
12
2021
medline:
22
2
2022
entrez:
8
12
2021
Statut:
ppublish
Résumé
Archaea are highly diverse and represent a primary life domain, but the majority of them remain uncultured. Currently, 16S rRNA phylogeny is widely used in archaeal taxonomy and diversity surveys. However, highly conserved sequence of 16S rRNA possibly results in generation of chimera in the amplicons and metagenome-assembled genomes (MAGs) and therefore limits its application. The newly developed phylogenomic approach has overcome these flaws, but it demands high-quality MAGs and intensive computation. In this study, we investigated the use of the archaeal transcription termination factor aCPSF1 in archaeal classification and diversity surveys. The phylogenetic analysis of 1,964 aCPSF1 orthologs retrieved from the available archaeal (meta)genomes resulted in convergent clustering patterns with those of archaeal phylogenomics and 16S rRNA phylogeny. The aCPSF1 phylogeny also displayed comparable clustering with the methanoarchaeal McrABG phylogeny and the haloarchaeal phylogenomics. Normalization of 779 aCPSF1 sequences including 261 from cultured archaeal species yielded a taxonomic ranking system with higher resolutions than that obtained with 16S rRNA for genus and species. Using the aCPSF1 taxonomy, 144 unclassified archaea in NCBI database were identified to various taxonomic ranks. Moreover, aCPSF1- and 16S rRNA-based surveys of the archaeal diversity in a sample from a South China Sea cold seep produced similar results. Our results demonstrate that aCPSF1 is an alternative archaeal phylogenetic marker, which exhibits higher resolution than 16S rRNA, and is more readily usable than phylogenomics in the taxonomic study of archaea.
Identifiants
pubmed: 34878325
doi: 10.1128/spectrum.01539-21
pmc: PMC8653824
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Transcription Factors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0153921Références
Microbiome. 2018 Oct 23;6(1):190
pubmed: 30352611
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Genome Res. 2011 Mar;21(3):494-504
pubmed: 21212162
Bioinformatics. 2012 Jul 15;28(14):1823-9
pubmed: 22556368
ISME J. 2012 Mar;6(3):610-8
pubmed: 22134646
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5037-5044
pubmed: 30814220
Science. 1997 May 2;276(5313):734-40
pubmed: 9115194
Benef Microbes. 2020 Mar 27;11(2):101-129
pubmed: 32073295
Int J Syst Evol Microbiol. 2012 Feb;62(Pt 2):263-271
pubmed: 22155757
Int J Syst Evol Microbiol. 2012 Mar;62(Pt 3):716-721
pubmed: 22140171
Nat Microbiol. 2017 May 30;2:17081
pubmed: 28555626
Bioinformatics. 2006 Jul 1;22(13):1658-9
pubmed: 16731699
Nat Microbiol. 2021 Jul;6(7):946-959
pubmed: 34155373
Environ Microbiol. 2021 Feb;23(2):728-743
pubmed: 32627268
Nucleic Acids Res. 2020 Sep 25;48(17):9589-9605
pubmed: 32857850
Science. 2017 Aug 11;357(6351):
pubmed: 28798101
mSystems. 2021 Oct 26;6(5):e0070321
pubmed: 34491083
Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5
pubmed: 27095192
Nat Biotechnol. 2018 Nov;36(10):996-1004
pubmed: 30148503
Nat Microbiol. 2016 Oct 03;1:16170
pubmed: 27694807
BMC Evol Biol. 2010 Jul 13;10:210
pubmed: 20626897
FEMS Microbiol Lett. 2019 Jan 1;366(2):
pubmed: 30629179
Extremophiles. 2009 Jan;13(1):31-7
pubmed: 18836684
mBio. 2019 Aug 20;10(4):
pubmed: 31431553
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4602-E4611
pubmed: 28533395
Nucleic Acids Res. 2013 Jul;41(12):e121
pubmed: 23598997
Mol Biol Evol. 2019 Dec 1;36(12):2737-2747
pubmed: 31504731
Genome Inform. 2009 Oct;23(1):205-11
pubmed: 20180275
Nucleic Acids Res. 2013 Jan;41(2):1091-103
pubmed: 23222134
Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):289-293
pubmed: 12656186
Genetics. 1992 Mar;130(3):399-410
pubmed: 1372578
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Nat Rev Microbiol. 2014 Sep;12(9):635-45
pubmed: 25118885
Mol Phylogenet Evol. 2018 Oct;127:46-54
pubmed: 29684598
Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088-90
pubmed: 270744
PLoS Comput Biol. 2011 Oct;7(10):e1002195
pubmed: 22039361
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Nature. 2016 Nov 17;539(7629):396-401
pubmed: 27749816
Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42
pubmed: 24288368
Mol Biol Evol. 2018 Feb 1;35(2):518-522
pubmed: 29077904
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
FEMS Microbiol Rev. 1994 Oct;15(2-3):155-73
pubmed: 7524576
Genome Res. 2015 Jul;25(7):1043-55
pubmed: 25977477
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Genome Biol. 2005;6(5):R42
pubmed: 15892870
PLoS One. 2010 Mar 10;5(3):e9490
pubmed: 20224823
Nat Microbiol. 2016 Apr 11;1:16048
pubmed: 27572647
Int J Syst Evol Microbiol. 2015 Mar;65(Pt 3):1050-1069
pubmed: 25428416
Structure. 2011 May 11;19(5):622-32
pubmed: 21565697
Nucleic Acids Res. 2002 Aug 15;30(16):3592-601
pubmed: 12177301
Microbiome. 2018 Jan 15;6(1):13
pubmed: 29335008
Nat Rev Microbiol. 2019 Apr;17(4):219-232
pubmed: 30664670
Appl Environ Microbiol. 2005 Dec;71(12):7724-36
pubmed: 16332745
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
Nat Microbiol. 2019 Apr;4(4):603-613
pubmed: 30833729
ISME J. 2017 Nov;11(11):2407-2425
pubmed: 28777382
Microbiome. 2018 Oct 4;6(1):179
pubmed: 30286807
Cold Spring Harb Perspect Biol. 2016 Jun 01;8(6):
pubmed: 26988968