Structural colour enhanced microfluidics.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
19 05 2022
19 05 2022
Historique:
received:
26
03
2021
accepted:
08
04
2022
entrez:
19
5
2022
pubmed:
20
5
2022
medline:
24
5
2022
Statut:
epublish
Résumé
Advances in microfluidic technology towards flexibility, transparency, functionality, wearability, scale reduction or complexity enhancement are currently limited by choices in materials and assembly methods. Organized microfibrillation is a method for optically printing well-defined porosity into thin polymer films with ultrahigh resolution. Here we demonstrate this method to create self-enclosed microfluidic devices with a few simple steps, in a number of flexible and transparent formats. Structural colour, a property of organized microfibrillation, becomes an intrinsic feature of these microfluidic devices, enabling in-situ sensing capability. Since the system fluid dynamics are dependent on the internal pore size, capillary flow is shown to become characterized by structural colour, while independent of channel dimension, irrespective of whether devices are printed at the centimetre or micrometre scale. Moreover, the capability of generating and combining different internal porosities enables the OM microfluidics to be used for pore-size based applications, as demonstrated by separation of biomolecular mixtures.
Identifiants
pubmed: 35589687
doi: 10.1038/s41467-022-29956-4
pii: 10.1038/s41467-022-29956-4
pmc: PMC9120135
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2281Informations de copyright
© 2022. The Author(s).
Références
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2293-E2302
pubmed: 28265064
Nature. 2006 Jul 27;442(7101):381-6
pubmed: 16871205
Cell Metab. 2021 Apr 6;33(4):740-747
pubmed: 33826916
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29518-29525
pubmed: 33148808
Curr Opin Biotechnol. 2003 Feb;14(1):42-50
pubmed: 12566001
Inorg Chem. 2008 Jul 7;47(13):5882-8
pubmed: 18498157
Trends Cancer. 2016 Jan 1;2(1):6-19
pubmed: 26858990
Nat Metab. 2021 Feb;3(2):149-165
pubmed: 33536639
Nat Photonics. 2011 Oct 1;5(10):591-597
pubmed: 22059090
Lab Chip. 2006 Nov;6(11):1405-8
pubmed: 17066161
Anal Bioanal Chem. 2008 Dec;392(7-8):1317-24
pubmed: 18807015
Nature. 2019 Jun;570(7761):363-367
pubmed: 31217598
Lab Chip. 2018 Aug 7;18(16):2323-2347
pubmed: 30010168
N Engl J Med. 1992 Jul 30;327(5):302-7
pubmed: 1377788
Lab Chip. 2010 Apr 7;10(7):918-20
pubmed: 20300678
Nature. 2006 Jul 27;442(7101):412-8
pubmed: 16871209
Annu Rev Biomed Eng. 2001;3:335-73
pubmed: 11447067
Science. 2000 Apr 7;288(5463):113-6
pubmed: 10753110
Cell Metab. 2021 Aug 3;33(8):1577-1591.e7
pubmed: 34081913
Chem Rev. 2017 Jun 28;117(12):8447-8480
pubmed: 28627178
Biomicrofluidics. 2012 Mar;6(1):11301-1130113
pubmed: 22662067
Anal Chem. 2002 Dec 15;74(24):6139-44
pubmed: 12510731
Langmuir. 2014 May 13;30(18):5142-51
pubmed: 24785579
Chem Soc Rev. 2010 Mar;39(3):1073-95
pubmed: 20179826
Nature. 2005 Sep 29;437(7059):648-55
pubmed: 16193039
Nature. 2006 Jul 27;442(7101):368-73
pubmed: 16871203
Lab Chip. 2009 Dec 7;9(23):3330-7
pubmed: 19904397
Nature. 2014 Mar 13;507(7491):181-9
pubmed: 24622198