XPG in the Nucleotide Excision Repair and Beyond: a study on the different functional aspects of XPG and its associated diseases.

Base excision repair Homologous recombination repair, R-loops Nucleotide excision repair Xeroderma Pigmentosum complementation group G

Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 06 09 2021
accepted: 02 03 2022
revised: 17 12 2021
pubmed: 21 5 2022
medline: 26 7 2022
entrez: 20 5 2022
Statut: ppublish

Résumé

Several proteins are involved in DNA repair mechanisms attempting to repair damages to the DNA continuously. One such protein is Xeroderma Pigmentosum Complementation Group G (XPG), a significant component in the Nucleotide Excision Repair (NER) pathway. XPG is accountable for making the 3' incision in the NER, while XPF-ERCC4 joins ERCC1 to form the XPF-ERCC1 complex. This complex makes a 5' incision to eliminate bulky DNA lesions. XPG is also known to function as a cofactor in the Base Excision Repair (BER) pathway by increasing hNth1 activity, apart from its crucial involvement in the NER. Reports suggest that XPG also plays a non-catalytic role in the Homologous Recombination Repair (HRR) pathway by forming higher-order complexes with BRCA1, BRCA2, Rad51, and PALB2, further influencing the activity of these molecules. Studies show that, apart from its vital role in repairing DNA damages, XPG is also responsible for R-loop formation, which facilitates exhibiting phenotypes of Werner Syndrome. Though XPG has a role in several DNA repair pathways and molecular mechanisms, it is primarily a NER protein. Unrepaired and prolonged DNA damage leads to genomic instability and facilitates neurological disorders, aging, pigmentation, and cancer susceptibility. This review explores the vital role of XPG in different DNA repair mechanisms which are continuously involved in repairing these damaged sites and its failure leading to XP-G, XP-G/CS complex phenotypes, and cancer progression.

Identifiants

pubmed: 35596054
doi: 10.1007/s11033-022-07324-1
pii: 10.1007/s11033-022-07324-1
doi:

Substances chimiques

Nuclear Proteins 0
Transcription Factors 0
DNA 9007-49-2
Endonucleases EC 3.1.-

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

7995-8006

Subventions

Organisme : Science and Engineering Research Board
ID : ECR/2016/000965

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583. https://doi.org/10.1101/cshperspect.a012583
doi: 10.1101/cshperspect.a012583 pubmed: 23545420 pmcid: 3683898
Kumar N, Raja S, Van Houten B (2020) The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res 48(20):11227–11243. https://doi.org/10.1093/nar/gkaa777
doi: 10.1093/nar/gkaa777 pubmed: 33010169 pmcid: 7672477
Thacker J (2011) Homologous Recombination Repair, Encyclopedia of Cancer. Springer, pp 1725–1729. https://doi.org/10.1007/978-3-642-16483-5_2801
Shiomi N, Kito S, Oyama M, Matsunaga T, Harada YN, Ikawa M, Okabe M, Shiomi T (2004) Identification of the XPG region that causes the onset of Cockayne syndrome by using Xpg mutant mice generated by the cDNA-mediated knock-in method. Mol Cell Biol 24(9):3712–3719. https://doi.org/10.1128/MCB.24.9.3712-3719.2004
doi: 10.1128/MCB.24.9.3712-3719.2004 pubmed: 15082767 pmcid: 387744
Constantinou A, Gunz D, Evans E, Lalle P, Bates PA, Wood RD, Clarkson SG (1999) Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem 274(9):5637–5648. https://doi.org/10.1074/jbc.274.9.5637
doi: 10.1074/jbc.274.9.5637 pubmed: 10026181
Liu Y, Kao HI, Bambara RA (2004) Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 73:589–615. https://doi.org/10.1146/annurev.biochem.73.012803.092453
doi: 10.1146/annurev.biochem.73.012803.092453 pubmed: 15189154
Schärer OD (2008) XPG: its products and biological roles. Adv Exp Med Biol 637:83–92. https://doi.org/10.1007/978-0-387-09599-8_9
doi: 10.1007/978-0-387-09599-8_9 pubmed: 19181113 pmcid: 2721477
Miętus M, Nowak E, Jaciuk M, Kustosz P, Studnicka J, Nowotny M (2014) Crystal structure of the catalytic core of Rad2: insights into the mechanism of substrate binding. Nucleic Acids Res 42(16):10762–10775. https://doi.org/10.1093/nar/gku729
doi: 10.1093/nar/gku729 pubmed: 25120270 pmcid: 4176360
Wakasugi M, Reardon JT, Sancar A (1997) The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 272(25):16030–16034. https://doi.org/10.1074/jbc.272.25.16030
doi: 10.1074/jbc.272.25.16030 pubmed: 9188507
Thorel F, Constantinou A, Dunand-Sauthier I, Nouspikel T, Lalle P, Raams A, Jaspers NG, Vermeulen W, Shivji MK, Wood RD, Clarkson SG (2004) Definition of a short region of XPG necessary for TFIIH interaction and stable recruitment to sites of UV damage. Mol Cell Biol 24(24):10670–10680. https://doi.org/10.1128/MCB.24.24.10670-10680.2004
doi: 10.1128/MCB.24.24.10670-10680.2004 pubmed: 15572672 pmcid: 533987
Dunand-Sauthier I, Hohl M, Thorel F, Jaquier-Gubler P, Clarkson SG, Schärer OD (2005) The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J Biol Chem 280(8):7030–7037. https://doi.org/10.1074/jbc.M412228200
doi: 10.1074/jbc.M412228200 pubmed: 15590680
González-Corrochano R, Ruiz FM, Taylor NMI, Huecas S, Drakulic S, Spínola-Amilibia M, Fernández-Tornero C (2020) The crystal structure of human XPG, the xeroderma pigmentosum group G endonuclease, provides insight into nucleotide excision DNA repair. Nucleic Acids Res 48(17):9943–9958. https://doi.org/10.1093/nar/gkaa688
doi: 10.1093/nar/gkaa688 pubmed: 32821917 pmcid: 7515719
Deitsch E, Hibbard EM, Petersen JL (2016) The UVS9 gene of Chlamydomonas encodes an XPG homolog with a new conserved domain. DNA Repair (Amst) 37:33–42. https://doi.org/10.1016/j.dnarep.2015.11.003
doi: 10.1016/j.dnarep.2015.11.003
Mocquet V, Lainé JP, Riedl T, Yajin Z, Lee MY, Egly JM (2007) Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J Jan 27(1):155–167. https://doi.org/10.1038/sj.emboj.7601948
doi: 10.1038/sj.emboj.7601948
Iyer N, Reagan MS, Wu KJ, Canagarajah B, Friedberg EC (1996) Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35(7):2157–2167. https://doi.org/10.1021/bi9524124
doi: 10.1021/bi9524124 pubmed: 8652557
Tsutakawa SE, Sarker AH, Ng C, Arvai AS, Shin DS, Shih B, Jiang S, Thwin AC, Tsai MS, Willcox A, Her MZ, Trego KS, Raetz AG, Rosenberg D, Bacolla A, Hammel M, Griffith JD, Cooper PK, Tainer JA (2020) Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc Natl Acad Sci USA 117(25):14127–14138. https://doi.org/10.1073/pnas.1921311117
doi: 10.1073/pnas.1921311117 pubmed: 32522879 pmcid: 7321962
Evans E, Fellows J, Coffer A, Wood RD (1997) Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J 16(3):625–638. https://doi.org/10.1093/emboj/16.3.625
doi: 10.1093/emboj/16.3.625 pubmed: 9034344 pmcid: 1169665
Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, DiGiovanna JJ (2007) Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145(4):1388–1396. https://doi.org/10.1016/j.neuroscience.2006.12.020
doi: 10.1016/j.neuroscience.2006.12.020 pubmed: 17276014
Schärer OD (2013) Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol 5(10):a012609. https://doi.org/10.1101/cshperspect.a012609
doi: 10.1101/cshperspect.a012609 pubmed: 24086042 pmcid: 3783044
van Zeeland AA, van Hoffen A, Mullenders LHF (2001) Nucleotide excision repair of UV-radiation induced photolesions in human cells, Sun Protection in Man, Elsevier, pp 377–391. https://doi.org/10.1016/S1568-461X(01)80054-5
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85. https://doi.org/10.1146/annurev.biochem.73.011303.073723
doi: 10.1146/annurev.biochem.73.011303.073723 pubmed: 15189136
Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JH, van Driel R, Vermeulen W, Houtsmuller AB (2006) Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol Cell Biol 26(23):8868–8879. https://doi.org/10.1128/MCB.00695-06
doi: 10.1128/MCB.00695-06 pubmed: 17000769 pmcid: 1636808
Matsunaga T, Park CH, Bessho T, Mu D, Sancar A (1996) Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 271(19):11047–11050. https://doi.org/10.1074/jbc.271.19.11047
doi: 10.1074/jbc.271.19.11047 pubmed: 8626644
Sarker AH, Tsutakawa SE, Kostek S, Ng C, Shin DS, Peris M, Campeau E, Tainer JA, Nogales E, Cooper PK (2005) Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell 20(2):187–198. https://doi.org/10.1016/j.molcel.2005.09.022
doi: 10.1016/j.molcel.2005.09.022 pubmed: 16246722
Tornaletti S, Hanawalt PC (1999) Effect of DNA lesions on transcription elongation. Biochimie 81(1–2):139–146. https://doi.org/10.1016/s0300-9084(99)80046-7
doi: 10.1016/s0300-9084(99)80046-7 pubmed: 10214918
Kumar N, Moreno NC, Feltes BC, Menck CF, Houten BV (2020) Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol 43(1):e20190104. https://doi.org/10.1590/1678-4685-GMB-2019-0104
doi: 10.1590/1678-4685-GMB-2019-0104 pubmed: 32141475 pmcid: 7198027
Klungland A, Höss M, Gunz D, Constantinou A, Clarkson SG, Doetsch PW, Bolton PH, Wood RD, Lindahl T (1999) Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 3(1):33–42. https://doi.org/10.1016/s1097-2765(00)80172-0
doi: 10.1016/s1097-2765(00)80172-0 pubmed: 10024877
Hohl M, Dunand-Sauthier I, Staresincic L, Jaquier-Gubler P, Thorel F, Modesti M, Clarkson SG, Schärer OD (2007) Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity. Nucleic Acids Res 35(9):3053–3063. https://doi.org/10.1093/nar/gkm092
doi: 10.1093/nar/gkm092 pubmed: 17452369 pmcid: 1888826
Oyama M, Wakasugi M, Hama T, Hashidume H, Iwakami Y, Imai R, Hoshino S, Morioka H, Ishigaki Y, Nikaido O, Matsunaga T (2004) Human NTH1 physically interacts with p53 and proliferating cell nuclear antigen. Biochem Biophys Res Commun 321(1):183–191. https://doi.org/10.1016/j.bbrc.2004.06.136
doi: 10.1016/j.bbrc.2004.06.136 pubmed: 15358233
Takaya H, Nakai H, Takamatsu S, Mandai M, Matsumura N (2020) Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep 10(1):2757. https://doi.org/10.1038/s41598-020-59671-3
doi: 10.1038/s41598-020-59671-3 pubmed: 32066851 pmcid: 7026096
Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18(1):99–113. https://doi.org/10.1038/cr.2008.1
doi: 10.1038/cr.2008.1 pubmed: 18166982
Trego KS, Groesser T, Davalos AR, Parplys AC, Zhao W, Nelson MR, Hlaing A, Shih B, Rydberg B, Pluth JM, Tsai MS, Hoeijmakers JHJ, Sung P, Wiese C, Campisi J, Cooper PK (2016) Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability. Mol Cell 61(4):535–546. https://doi.org/10.1016/j.molcel.2015.12.026
doi: 10.1016/j.molcel.2015.12.026 pubmed: 26833090 pmcid: 4761302
Herrero AB, Martín-Castellanos C, Marco E, Gago F, Moreno S (2006) Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin. Cancer Res 66(16):8155–8162. https://doi.org/10.1158/0008-5472.CAN-06-0179
doi: 10.1158/0008-5472.CAN-06-0179 pubmed: 16912194
Allison DF, Wang GG (2019) R-loops: formation, function, and relevance to cell stress. Cell Stress 3(2):38–46. https://doi.org/10.15698/cst2019.02.175
doi: 10.15698/cst2019.02.175 pubmed: 31225499 pmcid: 6551709
Pan X, Jiang N, Chen X, Zhou X, Ding L, Duan F (2014) R-loop structure: the formation and the effects on genomic stability. Yi Chuan 36(12):1185–1194. https://doi.org/10.3724/SP.J.1005.2014.1185
doi: 10.3724/SP.J.1005.2014.1185 pubmed: 25487262
Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16(10):583–597. https://doi.org/10.1038/nrg3961
doi: 10.1038/nrg3961 pubmed: 26370899
Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56(6):777–785. https://doi.org/10.1016/j.molcel.2014.10.020
doi: 10.1016/j.molcel.2014.10.020 pubmed: 25435140 pmcid: 4272638
Scalera C, Ticli G, Dutto I, Cazzalini O, Stivala LA, Prosperi E (2021) Transcriptional Stress Induces Chromatin Relocation of the Nucleotide Excision Repair Factor XPG. Int J Mol Sci 22(12):6589. https://doi.org/10.3390/ijms22126589
doi: 10.3390/ijms22126589 pubmed: 34205418 pmcid: 8235791
Newman A (1998) RNA splicing. Curr Biol 8(25):903–905. https://doi.org/10.1016/s0960-9822(98)00005-0
doi: 10.1016/s0960-9822(98)00005-0
Goulielmaki E, Tsekrekou M, Batsiotos N, Ascensão-Ferreira M, Ledaki E, Stratigi K, Chatzinikolaou G, Topalis P, Kosteas T, Altmüller J, Demmers JA, Barbosa-Morais NL, Garinis GA (2021) The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat Commun 12(1):3153. https://doi.org/10.1038/s41467-021-23505-1
doi: 10.1038/s41467-021-23505-1 pubmed: 34039990 pmcid: 8155215
Yasuhara T, Kato R, Hagiwara Y, Shiotani B, Yamauchi M, Nakada S, Shibata A, Miyagawa K (2018) Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell 175(2):558–570. https://doi.org/10.1016/j.cell.2018.08.056
doi: 10.1016/j.cell.2018.08.056 pubmed: 30245011
Marabitti V, Lillo G, Malacaria E, Palermo V, Sanchez M, Pichierri P, Franchitto A (2019) ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Nucleic Acids Res 47(7):3485–3502. https://doi.org/10.1093/nar/gkz025
doi: 10.1093/nar/gkz025 pubmed: 30657978 pmcid: 6468170
Cheng Q, Chen J (2010) Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 9(3):472–478. https://doi.org/10.4161/cc.9.3.10556
doi: 10.4161/cc.9.3.10556 pubmed: 20081365
Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’Connor PM, Fornace AJ Jr, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A 96(7):3706–3711. https://doi.org/10.1073/pnas.96.7.3706
doi: 10.1073/pnas.96.7.3706 pubmed: 10097101 pmcid: 22358
Vaiserman AM, Moskalev AA, Pasyukova EG (2015) Gadd45 Proteins in Aging and Longevity of Mammals and Drosophila. [Healthy Ageing and Longevity] Life Extension Volume 3, Chapter 2, pp 39–65. https://doi.org/10.1007/978-3-319-18326-8 .
Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, Döderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445(7128):671–675. https://doi.org/10.1038/nature05515
doi: 10.1038/nature05515 pubmed: 17268471
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE (2012) Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 11(1):51–66. https://doi.org/10.1016/j.arr.2011.09.003
doi: 10.1016/j.arr.2011.09.003 pubmed: 21986581
Ozgenc A, Loeb LA (2006) Werner Syndrome, aging and cancer. Genome Dyn 1:206–217. https://doi.org/10.1159/000092509
doi: 10.1159/000092509 pubmed: 18724062
Martin GM, Poot M, Haaf T (2020) Lessons for aging from Werner syndrome epigenetics. Aging 12(3):2022–2023. https://doi.org/10.18632/aging.102829
doi: 10.18632/aging.102829 pubmed: 32023552 pmcid: 7041779
Trego KS, Chernikova SB, Davalos AR, Perry JJ, Finger LD, Ng C, Tsai MS, Yannone SM, Tainer JA, Campisi J, Cooper PK (2011) The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome. Cell Cycle 10(12):1998–2007. https://doi.org/10.4161/cc.10.12.15878
doi: 10.4161/cc.10.12.15878 pubmed: 21558802 pmcid: 3154418
Lehmann AR, McGibbon D, Stefanini M (2011) Xeroderma pigmentosum. Orphanet J Rare Dis 6:70. https://doi.org/10.1186/1750-1172-6-70
doi: 10.1186/1750-1172-6-70 pubmed: 22044607 pmcid: 3221642
Keijzer W, Jaspers NG, Abrahams PJ, Taylor AM, Arlett CF, Zelle B, Takebe H, Kinmont PD, Bootsma D (1979) A seventh complementation group in excision-deficient xeroderma pigmentosum. Mutat Res 62(1):183–190. https://doi.org/10.1016/0027-5107(79)90231-8
doi: 10.1016/0027-5107(79)90231-8 pubmed: 492197
Brooks PJ (2017) The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Free Radic Biol Med 107:90–100. https://doi.org/10.1016/j.freeradbiomed.2016.12.028
doi: 10.1016/j.freeradbiomed.2016.12.028 pubmed: 28011151
Huang J, Liu X, Tang LL, Long JT, Zhu J, Hua RX, Li J (2017) XPG gene polymorphisms and cancer susceptibility: evidence from 47 studies. Oncotarget 8(23):37263–37277. https://doi.org/10.18632/oncotarget.16146
doi: 10.18632/oncotarget.16146 pubmed: 28416771 pmcid: 5513715
Deng N, Liu JW, Sun LP, Xu Q, Duan ZP, Dong NN, Yuan Y (2014) Expression of XPG protein in the development, progression and prognosis of gastric cancer. PLoS ONE 9(9):e108704. https://doi.org/10.1371/journal.pone.0108704
doi: 10.1371/journal.pone.0108704 pubmed: 25268735 pmcid: 4182552
Yang B, Chen WH, Wen XF, Liu H, Liu F (2013) Role of DNA repair-related gene polymorphisms in susceptibility to risk of prostate cancer. Asian Pac J Cancer Prev 14(10):5839–5842. https://doi.org/10.7314/apjcp.2013.14.10.5839
doi: 10.7314/apjcp.2013.14.10.5839 pubmed: 24289586
Cheng L, Spitz MR, Hong WK, Wei Q (2000) Reduced expression levels of nucleotide excision repair genes in lung cancer: a case-control analysis. Carcinogenesis 21(8):1527–1530. https://doi.org/10.1093/carcin/21.8.1527
doi: 10.1093/carcin/21.8.1527 pubmed: 10910954
Latimer JJ, Johnson JM, Kelly CM, Miles TD, Beaudry-Rodgers KA, Lalanne NA, Vogel VG, Kanbour-Shakir A, Kelley JL, Johnson RR, Grant SG (2010) Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer. Proc Natl Acad Sci USA 107(50):21725–21730. https://doi.org/10.1073/pnas.0914772107
doi: 10.1073/pnas.0914772107 pubmed: 21118987 pmcid: 3003008
Kumar R, Höglund L, Zhao C, Försti A, Snellman E, Hemminki K (2003) Single nucleotide polymorphisms in the XPG gene: determination of role in DNA repair and breast cancer risk. Int J Cancer 103(5):671–675. https://doi.org/10.1002/ijc.10870
doi: 10.1002/ijc.10870 pubmed: 12494477
Su J, Zhu Y, Dai B, Yuan W, Song J (2019) XPG Asp1104His polymorphism increases colorectal cancer risk especially in Asians. Am J Transl Res 11(2):1020–1029
Du H, Zhang X, Du M, Guo N, Chen Z, Shu Y, Zhang Z, Wang M, Zhu L (2014) Association study between XPG Asp1104His polymorphism and colorectal cancer risk in a Chinese population. Sci Rep 4:6700. https://doi.org/10.1038/srep06700
doi: 10.1038/srep06700 pubmed: 25332048 pmcid: 4204027
Zhao J, Chen S, Zhou H, Zhang T, Liu Y, He J, Zhu J, Ruan J (2018) XPG rs17655 G > C polymorphism associated with cancer risk: evidence from 60 studies. Aging (Albany NY) 10(5):1073–1088. https://doi.org/10.18632/aging.101448
de Lima-Bessa KM, Armelini MG, Chiganças V, Jacysyn JF, Amarante-Mendes GP, Sarasin A, Menck CF (2008) CPDs and 6-4PPs play different roles in UV-induced cell death in normal and NER-deficient human cells. DNA Repair (Amst) 7(2):303–312. https://doi.org/10.1016/j.dnarep.2007.11.003
doi: 10.1016/j.dnarep.2007.11.003
Reardon JT, Sancar A (2003) Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev 17(20):2539–2551. https://doi.org/10.1101/gad.1131003
doi: 10.1101/gad.1131003 pubmed: 14522951 pmcid: 218148
Snyder SH (2006) Retraction for Nouspikel, A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: Implications for a second XPG function. Proc Natl Acad Sci USA 103(51):19606. https://doi.org/10.1073/pnas.0609759103
Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291(5507):1284–1289. https://doi.org/10.1126/science.1056154
doi: 10.1126/science.1056154 pubmed: 11181991
O’Donovan A, Davies AA, Moggs JG, West SC, Wood RD (1994) XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature 371(6496):432–435. https://doi.org/10.1038/371432a0
doi: 10.1038/371432a0 pubmed: 8090225
Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58(5):235–263. https://doi.org/10.1002/em.22087
doi: 10.1002/em.22087 pubmed: 28485537 pmcid: 5474181
van Hoffen A, Balajee AS, van Zeeland AA, Mullenders LH (2003) Nucleotide excision repair and its interplay with transcription. Toxicology 193(1–2):79–90. https://doi.org/10.1016/j.tox.2003.06.001
doi: 10.1016/j.tox.2003.06.001 pubmed: 14599769
Mohrenweiser HW, Jones IM (1998) Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat Res 400(1–2):15–24. https://doi.org/10.1016/s0027-5107(98)00059-1
doi: 10.1016/s0027-5107(98)00059-1 pubmed: 9685572
Cheng L, Sturgis EM, Eicher SA, Spitz MR, Wei Q (2002) Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck. Cancer 94(2):393–397. https://doi.org/10.1002/cncr.10231
doi: 10.1002/cncr.10231 pubmed: 11900225
Walsh CS, Ogawa S, Karahashi H, Scoles DR, Pavelka JC, Tran H, Miller CW, Kawamata N, Ginther C, Dering J, Sanada M, Nannya Y, Slamon DJ, Koeffler HP, Karlan BY (2008) ERCC5 is a novel biomarker of ovarian cancer prognosis. J Clin Oncol 26(18):2952–2958. https://doi.org/10.1200/JCO.2007.13.5806
doi: 10.1200/JCO.2007.13.5806 pubmed: 18565881
Sabatino MA, Marabese M, Ganzinelli M, Caiola E, Geroni C, Broggini M (2010) Down-regulation of the nucleotide excision repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells. Mol Cancer 9:259. https://doi.org/10.1186/1476-4598-9-259
doi: 10.1186/1476-4598-9-259 pubmed: 20868484 pmcid: 2955619

Auteurs

Riasha Pal (R)

Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India.

Nilanjan Paul (N)

Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India.

Deep Bhattacharya (D)

Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India.

Sudeshna Rakshit (S)

Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India.

Geetha Shanmugam (G)

Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India.

Koustav Sarkar (K)

Department of Biotechnology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India. koustavsarkar@gmail.com.

Articles similaires

Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Animals Humans Mice Neoplasms Tumor Microenvironment
Testicular Neoplasms Neoplasms, Germ Cell and Embryonal Humans Cisplatin Jumonji Domain-Containing Histone Demethylases
DNA Methylation Humans DNA Animals Machine Learning

Classifications MeSH