DNA-based networks reveal the ecological determinants of plant-herbivore interactions along environmental gradients.
DNA metabarcoding
metabolomics
orthopteran herbivore
phylogenetic position
plant
resource abundance
temperature
trait matching
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
05
05
2022
received:
31
08
2021
accepted:
20
05
2022
medline:
27
11
2023
pubmed:
28
5
2022
entrez:
27
5
2022
Statut:
ppublish
Résumé
Understanding the ecological rules structuring the organization of species interactions is a prerequisite to predicting how ecosystems respond to environmental changes. While the ecological determinants of single networks have been documented, it remains unclear whether network ecological rules are conserved along spatial and environmental gradients. To address this gap, we reconstructed 48 plant-herbivore interaction networks along six elevation gradients in the Central European Alps in Switzerland, using DNA metabarcoding on orthoptera faeces. We developed hypotheses on the ecological mechanisms expected to structure interaction networks, based on plant phylogeny, plant abundance, leaf toughness, leaf nitrogen content and plant metabolomics. We show that plant phylogenetic relationships and species abundance have the greatest explanatory power regarding the structure of the ecological networks. Moreover, we found that leaf nitrogen content is a key determinant of interactions in warmer environments, while phenolic compounds and tannins are more important in colder environments, suggesting that determinants of species interactions can shift along environmental gradients. With this work, we propose an approach to study the mechanisms that structure the way species interact with each other between bioregions and ecosystems.
Substances chimiques
Nitrogen
N762921K75
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6436-6448Subventions
Organisme : National Swiss Foundation
ID : 162604
Organisme : National Swiss Foundation
ID : 179481
Organisme : ETH Zurich
Organisme : WOA Institution: Eidgenossische Technische Hochschule Zurich
Organisme : Consortia Name: CSAL
Informations de copyright
© 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Références
Albouy, C., Archambault, P., Appeltans, W., Araújo, M. B., Beauchesne, D., Cazelles, K., Cirtwill, A. R., Fortin, M. J., Galiana, N., Leroux, S. J., Pellissier, L., Poisot, T., Stouffer, D. B., Wood, S. A., & Gravel, D. (2019). The marine fish food web is globally connected. Nature Ecology and Evolution, 3(8), 1153-1161. https://doi.org/10.1038/s41559-019-0950-y
Albrecht, J., Classen, A., Vollstädt, M. G. R., Mayr, A., Mollel, N. P., Schellenberger Costa, D., Dulle, H. I., Fischer, M., Hemp, A., Howell, K. M., Kleyer, M., Nauss, T., Peters, M. K., Tschapka, M., Steffan-Dewenter, I., Böhning-Gaese, K., & Schleuning, M. (2018). Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 9, 3177. https://doi.org/10.1038/s41467-018-05610-w
Appel, H. M. (1993). Phenolics in ecological interactions-The importance of oxidation. Journal of Chemical Ecology, 19, 1521-1552.
Arstingstall, K. A., DeBano, S. J., Li, X., Wooster, D. E., Rowland, M. M., Burrows, S., & Frost, K. (2021). Capabilities and limitations of using DNA metabarcoding to study plant-pollinator interactions. Molecular Ecology, 30(20), 5266-5297. https://doi.org/10.1111/mec.16112
Barbehenn, R. V., & Peter Constabel, C. (2011). Tannins in plant-herbivore interactions. Phytochemistry, 72(13), 1551-1565. https://doi.org/10.1016/J.PHYTOCHEM.2011.01.040
Bascompte, J. (2010). Structure and dynamics of ecological networks. Science, 329(5993), 765-766. https://doi.org/10.1126/science.1194255
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2008). Fitting mixed-effects models using the lme4 package in R. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Baur, B., Baur, H., Roesti, C., & Roesti, D. (2006). Sauterelles, Grillons et Criquets de Suisse. Haupt. http://www.orthoptera.ch/literatur/item/sauterelles-grillons-et-criquets-de-suisse
Bernays, E. A., Bright, K. L., Gonzalez, N., & Angel, J. (1994). Dietary mixing in a generalist herbivore: Tests of two hypotheses. Ecology, 75(7), 1997-2006. https://doi.org/10.2307/1941604
Bernays, E. A., & Chapman, R. F. (1970). Food selection by Chorthippus parallelus (Zetterstedt) (Orthoptera: Acrididae) in the field. Journal of Animal Ecology, 39(2), 383. https://doi.org/10.2307/2977
Bernays, E. A., & Chapman, R. F. (1994). Host-plant selection by phytophagous insects. In C. Hall (Ed.), Plant Science 2, 117-118. doi: https://doi.org/10.1016/0168-9452(94)90025-6
Bersier, L.-F., & Kehrli, P. (2008). The signature of phylogenetic constraints on food-web structure. Ecological Complexity, 5(2), 132-139. https://doi.org/10.1016/J.ECOCOM.2007.06.013
Brousseau, P. M., Gravel, D., & Handa, I. T. (2018). Trait matching and phylogeny as predictors of predator-prey interactions involving ground beetles. Functional Ecology, 32(1), 192-202. https://doi.org/10.1111/1365-2435.12943
Canard, E. F., Mouquet, N., Mouillot, D., Stanko, M., Miklisova, D., & Gravel, D. (2014). Empirical evaluation of neutral interactions in host-parasite networks. American Naturalist, 183(4), 468-479. https://doi.org/10.1086/675363
Cates, R. G. (1980). Feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores: The effect of resource abundance and plant chemistry. Oecologia, 46(1), 22-31. https://doi.org/10.1007/BF00346961
Clark, K., Karsch-mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GenBank. Nucleic Acids Research, 44(11), 67-72. https://doi.org/10.1093/nar/gkv1276
Cuff, J. P., Windsor, F. M., Tercel, M. P. T. G., Kitson, J. J. N., & Evans, D. M. (2021). Overcoming the pitfalls of merging dietary metabarcoding into ecological networks. Methods in Ecology and Evolution, 13(3), 545-559. https://doi.org/10.1111/2041-210X.13796
Dalsgaard, B., Maruyama, P. K., Sonne, J., Hansen, K., Zanata, T. B., Abrahamczyk, S., & Martín González, A. M. (2021). The influence of biogeographical and evolutionary histories on morphological trait-matching and resource specialization in mutualistic hummingbird-plant networks. Functional Ecology, 35(1), 1120-1133. https://doi.org/10.1111/1365-2435.13784
Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen, E. J., Clare, E. L., Kartzinel, T. R., & Eveson, J. P. (2019). Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Molecular Ecology, 28(2), 391-406. https://doi.org/10.1111/mec.14734
Delarze, R., Gonseth, Y., Eggenberg, S., Vust, M., & Pearson Perret, S. (2015). Guide des milieux naturels de Suisse Ecologie, menaces, espèces caractéristiques. Rossoli.
Descombes, P., Kergunteuil, A., Glauser, G., Rasmann, S., & Pellissier, L. (2020). Plant physical and chemical traits associated with herbivory in situ and under a warming treatment. Journal of Ecology, 108(2), 733-749. https://doi.org/10.1111/1365-2745.13286
Descombes, P., Marchon, J., Pradervand, J. N., Bilat, J., Guisan, A., Rasmann, S., & Pellissier, L. (2017). Community-level plant palatability increases with elevation as insect herbivore abundance declines. Journal of Ecology, 105(1), 142-151. https://doi.org/10.1111/1365-2745.12664
Dormann, C. F., Fründ, J., & Schaefer, H. M. (2017). Identifying causes of patterns in ecological networks: Opportunities and limitations. Annual Review of Ecology, Evolution, and Systematics, 48(1), 559-584. https://doi.org/10.1146/annurev-ecolsys-110316-022928
Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5(4), 558-567. https://doi.org/10.1046/j.1461-0248.2002.00354.x
Durka, W., & Michalski, S. G. (2012). Daphne: A dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology, 93, 2297. https://doi.org/10.1890/12-0743.1
Edgar, R. C. (2016a). SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences. BioRxiv, 074161, 1-20. https://doi.org/10.1101/074161
Edgar, R. C. (2016b). UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, 81257, 1-21. https://doi.org/10.1101/081257
Eggenberg, S., & Möhl, A. (2013). Flora Vegetativa : ein Bestimmungsbuch für Pflanzen der Schweiz im blütenlosen Zustand (2nd ed.). Haupt. https://www.haupt.ch/Verlag/Buecher/Natur/Pflanzen/Flora-Vegetativa.html
Fagundes, R., Dáttilo, W., Ribeiro, S. P., Rico-Gray, V., & Del-Claro, K. (2016). Food source availability and interspecific dominance as structural mechanisms of ant-plant-hemipteran multitrophic networks. Arthropod-Plant Interactions, 10(3), 207-220. https://doi.org/10.1007/s11829-016-9428-x
Franzke, A., Unsicker, S. Y. B., Specht, J., Köhler, G., & Weisser, W. W. (2010). Being a generalist herbivore in a diverse world: How do diets from different grasslands influence food plant selection and fitness of the grasshopper Chorthippus parallelus? Ecological Entomology, 35(2), 126-138. https://doi.org/10.1111/j.1365-2311.2009.01168.x
Garibaldi, L. A., Bartomeus, I., Bommarco, R., Klein, A. M., Cunningham, S. A., Aizen, M. A., & Woyciechowski, M. (2015). Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 52, 1436-1444. https://doi.org/10.1111/1365-2664.12530
González-Varo, J. P., & Traveset, A. (2016). The labile limits of forbidden interactions. Trends in Ecology & Evolution, 31(9), 700-710. https://doi.org/10.1016/J.TREE.2016.06.009
Gravel, D., Baiser, B., Dunne, J. A., Kopelke, J.-P., Martinez, N. D., Nyman, T., & Roslin, T. (2019). Bringing Elton and Grinnell together: A quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 42(3), 401-415. https://doi.org/10.1111/ecog.04006
Gravel, D., Poisot, T., Albouy, C., Velez, L., & Mouillot, D. (2013). Inferring food web structure from predator-prey body size relationships. Methods in Ecology and Evolution, 4(11), 1083-1090. https://doi.org/10.1111/2041-210X.12103
Hattab, T., Leprieur, F., Lasram, F. B. R., Gravel, D., Loc'h, F., & Albouy, C. (2016). Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change. Ecography, 39(12), 1227-1237. https://doi.org/10.1111/ecog.01937
Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews, 80(03), 489-513. https://doi.org/10.1017/S1464793105006767
Hoiss, B., Krauss, J., Potts, S. G., Roberts, S., & Steffan-Dewenter, I. (2012). Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 4447-4456. https://doi.org/10.1098/rspb.2012.1581
Ibanez, S., Lavorel, S., Puijalon, S., & Moretti, M. (2013). Herbivory mediated by coupling between biomechanical traits of plants and grasshoppers. Functional Ecology, 27(2), 479-489. https://doi.org/10.1111/1365-2435.12058
Joern, A. (1979). Feeding patterns in grasshoppers (Orthoptera: Acrididae): Factors influencing diet specialization. Oecologia, 38(3), 325-347. https://doi.org/10.1007/BF00345192
Joern, A., & Behmer, S. T. (1997). Importance of dietary nitrogen and carbohydrates to survival, growth, and reproduction in adults of the grasshopper Ageneotettix deorum (Orthoptera: Acrididae). Oecologia, 112(2), 201-208. https://doi.org/10.1007/s004420050301
Joern, A., & Behmer, S. T. (1998). Impact of diet quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypothesis. Ecological Entomology, 23(2), 174-184. https://doi.org/10.1046/j.1365-2311.1998.00112.x
Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., & Wirth, C. (2011). TRY - a global database of plant traits. Global Change Biology, 17(9), 2905-2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x
Kergunteuil, A., Descombes, P., Glauser, G., Pellissier, L., & Rasmann, S. (2018). Plant physical and chemical defence variation along elevation gradients: A functional trait-based approach. Oecologia, 187(2), 561-571. https://doi.org/10.1007/s00442-018-4162-y
Kitson, J. J., Hahn, C., Sands, R. J., Straw, N. A., Evans, D. M., & Lunt, D. H. (2019). Detecting host-parasitoid interactions in an invasive lepidopteran using nested tagging DNA metabarcoding. Molecular Ecology, 28(2), 471-483.
Körner, C., Leuzinger, S., Riedl, S., Siegwolf, R. T., & Streule, L. (2016). Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples. Alpine Botany, 126(2), 153-166. https://doi.org/10.1007/s00035-016-0170-x
Krishna, A., Guimarães, P. R., Jr., Jordano, P., & Bascompte, J. (2008). A neutral-niche theory of nestedness in mutualistic networks. Oikos, 117(11), 1609-1618. https://doi.org/10.1111/j.1600-0706.2008.16540.x
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., … Hunt, T. (2018). caret: Classification and regression training. R Package Version 6.0-79.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 83, 1-26. https://doi.org/10.18637/jss.v082.i13
Laigle, I., Aubin, I., Digel, C., Brose, U., Boulangeat, I., & Gravel, D. (2018). Species traits as drivers of food web structure. Oikos, 127(2), 316-326. https://doi.org/10.1111/oik.04712
Lamanna, C., Blonder, B., Violle, C., Kraft, N. J. B., Sandel, B., Šímová, I., & Enquist, B. J. (2014). Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences of the United States of America., 111, 13745-13750. https://doi.org/10.1073/pnas.1317722111
Lauber, K., Wagner, G., & Gygax, A. (2012). Flora Helvetica: flore illustrée de Suisse (4th ed.). Haupt. https://www.summerfieldbooks.com/flora-helvetica-4th-edition~3361
Lemoine, N. P., Drews, W. A., Burkepile, D. E., & Parker, J. D. (2013). Increased temperature alters feeding behavior of a generalist herbivore. Oikos, 122(12), 1669-1678. https://doi.org/10.1111/j.1600-0706.2013.00457.x
Magoc, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200
Mattson, W. J. (1980). Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11(1), 119-161. https://doi.org/10.1146/annurev.es.11.110180.001003
Maunsell, S. C., Kitching, R. L., Burwell, C. J., & Morris, R. J. (2015). Changes in host--parasitoid food web structure with elevation. Journal of Animal Ecology, 84(2), 353-363. https://doi.org/10.1111/1365-2656.12285
Mccain, C. M., & Grytnes, J. A. (2010). Elevational gradients in species richness. Encyclopedia of Life Sciences, 1-10. https://doi.org/10.1002/9780470015902.a0022548
McFadden, I. R., Fritz, S. A., Zimmermann, N. E., Pellissier, L., Kissling, W. D., Tobias, J. A., Schleuning, M., & Graham, C. H. (2022). Global plant-frugivore trait matching is shaped by climate and biogeographic history. Ecology Letters, 25(3), 686-696.
Michalet, R., Gandoy, C., & Joud, D. (2002). Plant community composition and biomass on calcareous and siliceous substrates in the northern French Alps: Comparative effects of soil chemistry and water status. Arctic, Antactic and Alpine Research, 34(1), 102-113.
Miller-Struttmann, N. E., & Galen, C. (2014). High-altitude multi-taskers: Bumble bee food plant use broadens along an altitudinal productivity gradient. Oecologia, 176(4), 1033-1045. https://doi.org/10.1007/s00442-014-3066-8
Monteiro, A. B., & Faria, L. D. B. (2018). Matching consumer feeding behaviours and resource traits: A fourth-corner problem in food-web theory. Ecology Letters, 21, 1237-1243. https://doi.org/10.1111/ele.13096
Moorhouse-Gann, R. J., Dunn, J. C., de Vere, N., Goder, M., Cole, N., Hipperson, H., & Symondson, W. O. C. (2018). New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Scientific Reports, 8(1), 8542. https://doi.org/10.1038/s41598-018-26648-2
Morris, R. J., Sinclair, F. H., & Burwell, C. J. (2015). Food web structure changes with elevation but not rainforest stratum. Ecography, 38(8), 792-802. https://doi.org/10.1111/ecog.01078
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577-8582. https://doi.org/10.1073/pnas.0601602103
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P. McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. M., Szoecs, E., & Wagner, H. (2020). Vegan: Community ecology package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan
Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528. https://doi.org/10.1093/bioinformatics/bty633
Pellissier, L., Albouy, C., Bascompte, J., Farwig, N., Graham, C., Loreau, M., Maglianesi, M. A., Melián, C. J., Pitteloud, C., Roslin, T., Rohr, R., Saavedra, S., Thuiller, W., Woodward, G., Zimmermann, N. E., & Gravel, D. (2018). Comparing species interaction networks along environmental gradients. Biological Reviews, 93(2), 785-800. https://doi.org/10.1111/brv.12366
Pellissier, L., Fiedler, K., Ndribe, C., Dubuis, A., Pradervand, J. N., Guisan, A., & Rasmann, S. (2012). Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution, 2(8), 1818-1825. https://doi.org/10.1002/ece3.296
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., & Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167-234. https://doi.org/10.1071/BT12225
Pitteloud, C., Descombes, P., Sànchez-Moreno, S., Kergunteuil, A., Ibanez, S., Rasmann, S., & Pellissier, L. (2020). Contrasting responses of above- and below-ground herbivore communities along elevation. Oecologia, 194(3), 515-528. https://doi.org/10.1007/s00442-020-04778-7
Pitteloud, C., Walser, J. C., Descombes, P., Novaes de Santana, C., Rasmann, S., & Pellissier, L. (2021). The structure of plant-herbivore interaction networks varies along elevational gradients in the European Alps. Journal of Biogeography, 48(2), 465-476. https://doi.org/10.1111/jbi.14014
Poelman, E. H., & Kessler, A. (2016). Keystone herbivores and the evolution of plant defenses. Trends in Plant Science, 21(6), 477-485. https://doi.org/10.1016/J.TPLANTS.2016.01.007
Poisot, T., Bergeron, G., Cazelles, K., Dallas, T., Gravel, D., Macdonald, A., & Vissault, S. (2020). Environmental biases in the study of ecological networks at the planetary scale. BioRxiv, 2020(01), 27.921429. https://doi.org/10.1101/2020.01.27.921429
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/, https://doi.org/10.1007/978-3-540-74686-7
Rahbek, C. (1995). The elevational gradient of species richness: A uniform pattern? Ecography, 18(2), 200-205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x
Ramos-Jiliberto, R., Domínguez, D., Espinoza, C., López, G., Valdovinos, F. S., Bustamante, R. O., & Medel, R. (2010). Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecological Complexity, 7(1), 86-90. https://doi.org/10.1016/j.ecocom.2009.06.001
Refsnider, J. M., Carter, S. E., Kramer, G. R., Siefker, A. D., & Streby, H. M. (2019). Is dietary or microhabitat specialization associated with environmental heterogeneity in horned lizards (Phrynosoma)? Ecology and Evolution, 9(10), 5542-5550. https://doi.org/10.1002/ece3.5109
Reiss, J., Bridle, J. R., Montoya, J. M., & Woodward, G. (2009). Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology & Evolution, 24(9), 505-514. https://doi.org/10.1016/J.TREE.2009.03.018
Rhoades, D. F., & Cates, R. G. (1976). Toward a general theory of plant antiherbivore chemistry. In J. W. Wallace & R. L. Mansell (Eds.), Biochemical Interaction Between Plants and Insects. Recent Advances in Phytochemistry (Vol. 10, pp. 168-213). Springer. https://doi.org/10.1007/978-1-4684-2646-5_4
Rohr, R. P., & Bascompte, J. (2014). Components of phylogenetic signal in antagonistic and mutualistic networks. American Naturalist, 184(5), 556-564. https://doi.org/10.1086/678234
Roslin, T., & Majaneva, S. (2016). The use of DNA barcodes in food web construction-Terrestrial and aquatic ecologists unite! Genome, 59(9), 603-628. https://doi.org/10.1139/gen-2015-0229
Roslin, T., Traugott, M., Jonsson, M., Stone, G. N., Creer, S., & Symondson, W. O. C. (2019). Introduction: Special issue on species interactions, ecological networks and community dynamics - Untangling the entangled bank using molecular techniques. Molecular Ecology, 28(2), 157-164. https://doi.org/10.1111/mec.14974
Salminen, J. P., & Karonen, M. (2011). Chemical ecology of tannins and other phenolics: We need a change in approach. Functional Ecology, 25, 325-338.
Sam, K., Koane, B., Jeppy, S., Sykorova, J., & Novotny, V. (2017). Diet of land birds along an elevational gradient in Papua New Guinea. Scientific Reports, 7(1), 44018. https://doi.org/10.1038/srep44018
Sanson, G., Read, J., Aranwela, N., Clissold, F., & Peeters, P. (2001). Measurement of leaf biomechanical properties in studies of herbivory: Opportunities, problems and procedures. Austral Ecology, 26(5), 535-546. https://doi.org/10.1046/j.1442-9993.2001.01154.x
Schleuning, M., Fründ, J., Klein, A.-M., Abrahamczyk, S., Alarcón, R., Albrecht, M., & Gibbard, P. L. (2012). Specialization of mutualistic interaction networks decreases toward tropical latitudes. Current Biology: CB, 22(20), 1925-1931. https://doi.org/10.1016/j.cub.2012.08.015
Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863-864. https://doi.org/10.1093/bioinformatics/btr026
Sonne, J., Vizentin-Bugoni, J., Maruyama, P. K., Araujo, A. C., Chávez-González, E., Coelho, A. G., Cotton, P. A., Marín-Gómez, O. H., Lara, C., Lasprilla, L. R., Machado, C. G., Maglianesi, M. A., Malucelli, T. S., González, A. M. M., Oliveira, G. M., Oliveira, P. E., Ortiz-Pulido, R., Rocca, M. A., Rodrigues, L. C., … Dalsgaard, B. (2020). Ecological mechanisms explaining interactions within plant-hummingbird networks: Morphological matching increases towards lower latitudes. Proceedings of the Royal Society B, 287(1922), 20192873.
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O., & Arita, M. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12(6), 523-526. https://doi.org/10.1038/nmeth.3393
Tylianakis, J. M., & Morris, R. J. (2017). Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, and Systematics, 48(1), 25-48. https://doi.org/10.1146/annurev-ecolsys-110316-022821
Unsicker, S. B., Oswald, A., Köhler, G., & Weisser, W. W. (2008). Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore. Oecologia, 156(2), 313-324. https://doi.org/10.1007/s00442-008-0973-6
Vázquez, D. P., Melián, C. J., Williams, N. M., Blüthgen, N., Krasnov, B. R., & Poulin, R. (2007). Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116(7), 1120-1127. https://doi.org/10.1111/j.0030-1299.2007.15828.x
Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W. T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval-Calderón, M., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nature Biotechnology, 34, 828-837. https://doi.org/10.1038/nbt.3597
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821-827.
Welti, E. A. R., & Joern, A. (2015). Structure of trophic and mutualistic networks across broad environmental gradients. Ecology and Evolution, 5(2), 326-334. https://doi.org/10.1002/ece3.1371