Complete genome sequence and phylogenetic analysis of medicinal plant Abrus cantoniensis for evolutionary research and germplasm utilization.
Journal
The plant genome
ISSN: 1940-3372
Titre abrégé: Plant Genome
Pays: United States
ID NLM: 101273919
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
14
02
2022
accepted:
09
05
2022
pubmed:
25
6
2022
medline:
20
9
2022
entrez:
24
6
2022
Statut:
ppublish
Résumé
Abrus cantoniensis Hance, a native medicinal plant in southern China, is officially recorded in the Chinese Pharmacopoeia. Here, we presented the first high-quality genome in Abrus genus, A. cantoniensis genome, as well as the detailed genomic information. The assembled genome size was 381.27 Mb with a scaffold N50 of 18.95 Mb, and 98.97% of the assembled sequences were anchored on 11 pseudochromosomes. The A. cantoniensis genome comprised 25,058 protein-coding genes and 45.12% of the assemblies were repetitive sequences. Comparative genome analysis suggested that chromosome translocation and inversion played an important role in the differentiation of Abrus. In addition, 24 toxin-related genes were identified, which formed two tandem gene clusters on chromosomes 2 and 3. The chromosome-level genome of A. cantoniensis obtained in this work provides a valuable resource for understanding the evolution, active ingredient biosynthesis, and genetic improvement for A. cantoniensis and Abrus species.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e20236Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
Références
Bateman, A. (2004). The Pfam protein families database. Nucleic Acids Research, 32, D138-D141. https://doi.org/10.1093/nar/gkh121
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10, 421. https://doi.org/10.1186/1471-2105-10-421
Chen, N. (2004). Using repeat masker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 5, 4-10. https://doi.org/10.1002/0471250953.bi0410s05
Chen, R. Y. (2009). Chromosome mapping of the genomes of major economic plants in China. Science Press.
Chen, X. B., Han, Y. J., & Pan-Jian, X. U. (2009). The inhibitory effect of Abrus Cantoniensis Hance on hepatitis b virus in vitro. Herald of Medicine, 28(4), 3. http://en.cnki.com.cn/Article_en/CJFDTotal-YYDB200904007.htm
Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., Dunn, C., O'malley, R., Figueroa-Balderas, R., Morales-Cruz, A., Cramer, G. R., Delledonne, M., Luo, C., Ecker, J. R., Cantu, D., Rank, D. R., & Schatz, M. C. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods, 13, 1050-1054. https://doi.org/10.1038/nmeth.4035
De Bie, B. T., Cristianini, N., Demuth, J. P., & Hahn, M. W. (2006). CAFE: A computational tool for the study of gene family evolution. Bioinformatics, 22, 1269-1271. https://doi.org/10.1093/bioinformatics/btl097
Delcher, A. L., Salzberg, S. L., & Phillippy, A. M. (2003). Using MUMmer to identify similar regions in large sequence sets. Current Protocols in Bioinformatics, 10-13. https://doi.org/10.1002/0471250953.bi1003s00
Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, M. S., Machol, I., Lander, E. S., Aiden, A. P., & Aiden, E. L. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 356, 92-95. https://doi.org/10.1126/science.aal3327
Durand, N. C., Shamim, M. S., Machol, I., Rao, S. S. P., Huntley, M. H., Lander, E. S., & Aiden, E. L. (2016). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell System, 3, 95-98. https://doi.org/10.1016/j.cels.2016.07.002
Emms, D. M., & Kelly, S. (2015). OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology, 16, 157. https://doi.org/10.1186/s13059-015-0721-2
Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 39, W29-W37. https://doi.org/10.1093/nar/gkr367
Foucher, J., Ruh, M., Préveaux, A., Carrère, S., Pelletier, S., Briand, M., Serre, R.-F., Jacques, M.-A., & Chen, N. W. G. (2020). Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics, 21, 566. https://doi.org/10.1186/s12864-020-06972-6
Griffiths-Jones, S. (2005). Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Research, 33, D121-D124. https://doi.org/10.1093/nar/gki081
Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., White, O., Buell, C. R., & Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology, 9, R7. https://doi.org/10.1186/gb-2008-9-1-r7
Hovde, B. T., Daligault, H. E., Hanschen, E. R., Kunde, Y. A., Johnson, M. B., Starkenburg, S. R., & Johnson, S. L. (2019). Detection of abrin-like and prepropulchellin-like toxin genes and transcripts using whole genome sequencing and full-length transcript sequencing of Abrus precatorius. Toxins, 11, 691. https://doi.org/10.3390/toxins11120691
Huang, K., & Rieseberg, L. H. (2020). Frequency, origins, and evolutionary role of chromosomal inversions in plants. Frontiers in Plant Science, 11, 296. https://doi.org/10.3389/fpls.2020.00296
Jens, K., Frank, H., & Jan, G. (2019). GeMoMa: Homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods in Molecular Biology, 1962, 161-177. https://doi.org/10.1007/978-1-4939-9173-0_9
Jurka, J. (2000). Repbase update: A database and an electronic journal of repetitive elements. Nucleic Acids Research, 16, 418-420. https://doi.org/10.1016/s0168-9525(00)02093-x
Kanehisa, M. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27-30. https://doi.org/10.1093/nar/28.1.27
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780. https://doi.org/10.1093/molbev/mst010
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357-360. https://doi.org/10.1038/nmeth.3317
Kumar, S., Stecher, G., Suleski, M., & Hedges, S. B. (2017). TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34, 1812-1819. https://doi.org/10.1093/molbev/msx116
Lagesen, K., Hallin, P., Rødland, E. A., Staerfeldt, H.-H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35, 3100-3108. https://doi.org/10.1093/nar/gkm160
Lee, H.-A., Kim, S., Kim, S., & Choi, D. (2017). Expansion of sesquiterpene biosynthetic gene clusters in pepper confers nonhost resistance to the Irish potato famine pathogen. New Phytologist, 215, 1132-1143. https://doi.org/10.1111/nph.14637
Li, F., Gao, Y., Wu, B., Cai, Q., & Wang, S. (2021). High-quality de novo genome assembly of Huajingxian 74, a receptor parent of single segment substitution lines. Rice Science, 28, 109-113. https://doi.org/10.1016/j.rsci.2020.09.010
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997. https://doi.org/10.48550/arXiv.1303.3997
Li, L., Stoeckert, C. J., & Roos, D. S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13, 2178-2189. https://doi.org/10.1101/gr.1224503
Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923-930. https://doi.org/10.1093/bioinformatics/btt656
Liu, B., Shi, Y., Yuan, J., Hu, X., Zhang, H., Li, N., Li, Z., Chen, Y., Mu, D., & Fan, W. (2013). Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv:1308.2012. https://doi.org/10.48550/arXiv.1308.2012
Love, M., Anders, S., & Huber, W. (2014). Differential analysis of count data-The DESeq2 package. Genome Biology, 15, 1110-1186.
Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25, 955-964. https://doi.org/10.1093/nar/25.5.955
Martin, G., Baurens, F.-C., Hervouet, C., Salmon, F., Delos, J.-M., Labadie, K., Perdereau, A., Mournet, P., Blois, L., Dupouy, M., Carreel, F., Ricci, S., Lemainque, A., Yahiaoui, N., & D'hont, A. (2020). Chromosome reciprocal translocations have accompanied subspecies evolution in bananas. The Plant Journal, 104, 1698-1711. https://doi.org/10.1111/tpj.15031
Miyamoto, K., Fujita, M., Shenton, M. R., Akashi, S., Sugawara, C., Sakai, A., Horie, K., Hasegawa, M., Kawaide, H., Mitsuhashi, W., Nojiri, H., Yamane, H., Kurata, N., Okada, K., & Toyomasu, T. (2016). Evolutionary trajectory of phytoalexin biosynthetic gene clusters in rice. The Plant Journal, 87, 293-304. https://doi.org/10.1111/tpj.13200
Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2020). GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communication, 11, 1432. https://doi.org/10.1038/s41467-020-14998-3
Schuler, M. (2003). Functional genomics of P450s. Annual Review of Plant Biology, 54, 629-667. https://doi.org/10.1146/annurev.arplant.54.031902.134840
Silva, A. L. C., Goto, L. S., Dinarte, A. R., Hansen, D., Moreira, R. A., Beltramini, L. M., & Araújo, A. P. U. (2005). Pulchellin, a highly toxic type 2 ribosome-inactivating protein from Abrus pulchellus. The FEBS Journal, 272, 1201-1210. https://doi.org/10.1111/j.1742-4658.2005.04545.x
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31, 3210-3212. https://doi.org/10.1093/bioinformatics/btv351
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., & Morgenstern, B. (2006). AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Research, 34, W435-W439. https://doi.org/10.1093/nar/gkl200
Sun, P., Jiao, B., Yang, Y., Shan, L., Li, T., Li, X., Xi, Z., Wang, X., & Liu, J. (2021). WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. bioRxiv, 2021.04.29.44196. https://doi.org/10.1101/2021.04.29.441969
Ting-Shu, L., & Huang, S. Y. (2019). Chemical components and clinical application of Abri Herba. Chinese Journal of Experimental Traditional Medical Formulae, 25, 226-234.
Wang, L., Yu, S., Tong, C., Zhao, Y., Liu, Y., Song, C., Zhang, Y., Zhang, X., Wang, Y., Hua, W., Li, D., Li, D., Li, F., Yu, J., Xu, C., Han, X., Huang, S., Tai, S., Wang, J., … Zhang, X. (2014). Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biology, 15, R39. https://doi.org/10.1186/gb-2014-15-2-r39
Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X., Lee, T.-H., Jin, H., Marler, B., Guo, H., Kissinger, J. C., & Paterson, A. H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49. https://doi.org/10.1093/nar/gkr1293
Yang, M., Al, Z. M., Chen, Y., Li, L., & Cheung, H. (2014). In vitro antioxidant activities and anti-proliferative properties of the functional herb Abrus cantoniensis and its main alkaloid abrine. Food & Function, 5, 2268-2277. https://doi.org/10.1039/C4FO00217B
Yang, M., Shen, Q., Li, L.-Q., Huang, Y.-Q., & Cheung, H.-Y. (2015). Phytochemical profiles, antioxidant activities of functional herb Abrus cantoniensis and Abrus mollis. Food Chemistry, 177, 304-312. https://doi.org/10.1016/j.foodchem.2015.01.054
Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586-1591. https://doi.org/10.1093/molbev/msm088
Zdobnov, E. M., & Apweiler, R. (2001). InterProScan. An integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17, 847-848. https://doi.org/10.1093/bioinformatics/17.9.847