scAPAmod: Profiling Alternative Polyadenylation Modalities in Single Cells from Single-Cell RNA-Seq Data.

Gaussian mixture model alternative polyadenylation (APA) patterns of APA usages single-cell RNA-seq

Journal

International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791

Informations de publication

Date de publication:
23 Jul 2022
Historique:
received: 29 03 2022
revised: 01 07 2022
accepted: 21 07 2022
entrez: 28 7 2022
pubmed: 29 7 2022
medline: 30 7 2022
Statut: epublish

Résumé

Alternative polyadenylation (APA) is a key layer of gene expression regulation, and APA choice is finely modulated in cells. Advances in single-cell RNA-seq (scRNA-seq) have provided unprecedented opportunities to study APA in cell populations. However, existing studies that investigated APA in single cells were either confined to a few cells or focused on profiling APA dynamics between cell types or identifying APA sites. The diversity and pattern of APA usages on a genomic scale in single cells remains unappreciated. Here, we proposed an analysis framework based on a Gaussian mixture model, scAPAmod, to identify patterns of APA usage from homogeneous or heterogeneous cell populations at the single-cell level. We systematically evaluated the performance of scAPAmod using simulated data and scRNA-seq data. The results show that scAPAmod can accurately identify different patterns of APA usages at the single-cell level. We analyzed the dynamic changes in the pattern of APA usage using scAPAmod in different cell differentiation and developmental stages during

Identifiants

pubmed: 35897701
pii: ijms23158123
doi: 10.3390/ijms23158123
pmc: PMC9329739
pii:
doi:

Substances chimiques

3' Untranslated Regions 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

Nucleic Acids Res. 2019 Nov 4;47(19):10027-10039
pubmed: 31501864
Mol Cell. 2017 Jul 6;67(1):148-161.e5
pubmed: 28673540
Free Radic Biol Med. 2003 Feb 15;34(4):496-502
pubmed: 12566075
Bioinformatics. 2020 Feb 15;36(4):1262-1264
pubmed: 31557285
Mol Syst Biol. 2015 Jun 03;11(6):812
pubmed: 26040288
Mol Reprod Dev. 2011 Jun;78(6):415-25
pubmed: 21542049
Genome Res. 2021 Oct;31(10):1856-1866
pubmed: 34035046
Biol Reprod. 2020 Apr 15;102(4):852-862
pubmed: 31837139
Genomics Proteomics Bioinformatics. 2017 Oct;15(5):287-300
pubmed: 29031844
Biol Reprod. 2007 Jun;76(6):992-1001
pubmed: 17301292
Brief Bioinform. 2020 Jul 15;21(4):1261-1276
pubmed: 31267126
Cell. 2015 May 7;161(4):790-802
pubmed: 25957686
Nucleic Acids Res. 2016 May 5;44(8):e73
pubmed: 26740580
BMC Biol. 2021 Jul 23;19(1):144
pubmed: 34301239
Nat Rev Genet. 2019 Oct;20(10):599-614
pubmed: 31267064
Cell Rep. 2012 Sep 27;2(3):666-73
pubmed: 22939981
Cell. 2015 May 21;161(5):1202-1214
pubmed: 26000488
Genome Biol. 2017 Jun 27;18(1):123
pubmed: 28655331
Neuron. 2017 Sep 13;95(6):1334-1349.e5
pubmed: 28910620
Nucleic Acids Res. 1999 Jul 15;27(14):2972-80
pubmed: 10390541
PLoS One. 2019 May 17;14(5):e0217196
pubmed: 31100099
Nucleic Acids Res. 2012 Aug;40(15):7162-75
pubmed: 22570411
Genomics. 1999 Sep 1;60(2):111-20
pubmed: 10486202
Brief Bioinform. 2015 Mar;16(2):304-13
pubmed: 24695098
Nature. 1993 Mar 18;362(6417):264-7
pubmed: 7681549
Comput Struct Biotechnol J. 2020 Feb 05;18:332-343
pubmed: 32099593
Reprod Sci. 2012 Sep;19(9):911-22
pubmed: 22814100
Brief Bioinform. 2021 Jul 20;22(4):
pubmed: 33142319
Nucleic Acids Res. 2007;35(1):234-46
pubmed: 17158511
Bioinformatics. 2018 Jul 15;34(14):2392-2400
pubmed: 29490015
Nat Biotechnol. 2012 Aug;30(8):777-82
pubmed: 22820318
Genome Biol. 2020 Jul 8;21(1):167
pubmed: 32641141
Mol Reprod Dev. 2019 Sep;86(9):1199-1209
pubmed: 31318116
Nature. 2013 Jun 13;498(7453):236-40
pubmed: 23685454
BMC Biol. 2016 Jan 22;14:6
pubmed: 26801249
Nucleic Acids Res. 2020 Jun 19;48(11):5926-5938
pubmed: 32421815
PLoS One. 2015 Feb 11;10(2):e0116360
pubmed: 25671615
Nat Commun. 2017 Jan 16;8:14049
pubmed: 28091601
RNA Biol. 2019 Jun;16(6):785-797
pubmed: 30810468
BMB Rep. 2017 Apr;50(4):201-207
pubmed: 28148393
Sci Rep. 2018 Apr 25;8(1):6521
pubmed: 29695820
J Anim Breed Genet. 2006 Dec;123(6):384-8
pubmed: 17177693

Auteurs

Lingwu Qian (L)

Department of Automation, Xiamen University, Xiamen 361005, China.

Hongjuan Fu (H)

Department of Automation, Xiamen University, Xiamen 361005, China.

Yunwen Mou (Y)

Department of Automation, Xiamen University, Xiamen 361005, China.

Weixu Lin (W)

Department of Automation, Xiamen University, Xiamen 361005, China.

Lishan Ye (L)

Xiamen Health and Medical Big Data Center, Xiamen 361008, China.

Guoli Ji (G)

Department of Automation, Xiamen University, Xiamen 361005, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH