Plant community-mediated effects of grazing on plant diseases.


Journal

Oecologia
ISSN: 1432-1939
Titre abrégé: Oecologia
Pays: Germany
ID NLM: 0150372

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 02 07 2021
accepted: 17 07 2022
pubmed: 31 7 2022
medline: 14 9 2022
entrez: 30 7 2022
Statut: ppublish

Résumé

Grazing is one of the most important management practices for grasslands. To date, most studies on how grazing affects plant diseases have focused on a single plant species, ignoring plant community characteristics and phylogeny. We used data from a 6-year yak grazing experiment (0, 1, 2, and 3 yak(s) ha

Identifiants

pubmed: 35907123
doi: 10.1007/s00442-022-05223-7
pii: 10.1007/s00442-022-05223-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

897-905

Subventions

Organisme : National Natural Science Foundation of China
ID : 32001116
Organisme : National Natural Science Foundation of China
ID : 31901192
Organisme : national basic research program of china (973 program)
ID : 2017YFC0504806
Organisme : Gansu Science and Technology Department
ID : 21JR7RA532

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Burdon JJ, Chilvers GA (1977) Controlled environment experiments on epidemic rates of barley mildew in different mixtures of barley and wheat. Oecologia 28:141–146. https://doi.org/10.1007/BF00345249
doi: 10.1007/BF00345249 pubmed: 28309012
Burdon JJ, Chilvers GA (1982) Host density as a factor in plant disease ecology. Annu Rev Phytopathol 20:143–166. https://doi.org/10.1146/annurev.py.20.090182.001043
doi: 10.1146/annurev.py.20.090182.001043
Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. https://doi.org/10.1007/s00265-010-1029-6
doi: 10.1007/s00265-010-1029-6
Cappelli SL, Pichon NA, Kempel A, Allan E (2020) Sick plants in grassland communities: a growth-defense trade-off is the main driver of fungal pathogen abundance and impact. Ecol Lett 23:1349–1359. https://doi.org/10.1111/ele.13537
doi: 10.1111/ele.13537 pubmed: 32455502
Chen LF, Zhou SR (2015) A combination of species evenness and functional diversity is the best predictor of disease risk in multihost communities. Am Nat 186:755–765. https://doi.org/10.1086/683774
doi: 10.1086/683774 pubmed: 26655982
Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA et al (2015) Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Natl Acad Sci USA 112:8667–8671. https://doi.org/10.1073/pnas.1506279112
doi: 10.1073/pnas.1506279112 pubmed: 26069208 pmcid: 4507196
Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899. https://doi.org/10.1126/science.230.4728.895
doi: 10.1126/science.230.4728.895 pubmed: 17739203
Daleo P, Silliman B, Alberti J, Escapa M, Canepuccia A, Peña N, Iribarne O (2009) Grazer facilitation of fungal infection and the control of plant growth in south-western Atlantic salt marshes. J Ecol 97:781–787. https://doi.org/10.1111/j.1365-2745.2009.01508.x
doi: 10.1111/j.1365-2745.2009.01508.x
Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, Veneault-Fourrey C et al (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 108:9166–9171. https://doi.org/10.1073/pnas.1019315108
doi: 10.1073/pnas.1019315108 pubmed: 21536894 pmcid: 3107277
Ericson L, Wennstrdm A (1997) The effect of herbivory on the interaction between the clonal plant Trientalis europaea and its smut fungus Urocystis trientalis. Oikos 80:107–111. https://doi.org/10.2307/3546521
doi: 10.2307/3546521
Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci USA 104:4979–4983. https://doi.org/10.1073/pnas.060796810
doi: 10.1073/pnas.060796810 pubmed: 17360396 pmcid: 1829250
Gilbert GS, Magarey R, Suiter K, Webb CO (2012) Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol Appl 5:869–878. https://doi.org/10.1111/j.1752-4571.2012.00265.x
doi: 10.1111/j.1752-4571.2012.00265.x pubmed: 23346231 pmcid: 3552404
Halliday FW, Rohr JR (2020) Measuring the shape of the biodiversity-disease relationship across systems reveals new findings and key gaps. Nat Commun 10:5032. https://doi.org/10.1038/s41467-019-13049-w
doi: 10.1038/s41467-019-13049-w
Halliday FW, Heckman RW, Wilfahrt PA, Mitchell CE, Young H (2018) Past is prologue: host community assembly and the risk of infectious disease over time. Ecol Lett 22:138–148. https://doi.org/10.1111/ele.13176
doi: 10.1111/ele.13176 pubmed: 30403005
Halliday FW, Rohr JR, Laine AL (2020) Biodiversity loss underlies the dilution effect of biodiversity. Ecol Lett 23:1611–1622. https://doi.org/10.1111/ele.13590
doi: 10.1111/ele.13590 pubmed: 32808427 pmcid: 7693066
Heckman RW, Halliday FW, Mitchell CE (2019) A growth–defense trade-off is general across native and exotic grasses. Oecologia 191:609–620. https://doi.org/10.1007/s00442-019-04507-9
doi: 10.1007/s00442-019-04507-9 pubmed: 31542812
Huang ZY, de Boer WF, van Langevelde F, Olson V, Blackburn TM, Prins HH (2013) Species’ life-history traits explain interspecific variation in reservoir competence: a possible mechanism underlying the dilution effect. PLoS ONE 8:e54341. https://doi.org/10.1371/journal.pone.0054341
doi: 10.1371/journal.pone.0054341 pubmed: 23365661 pmcid: 3554779
Huang MJ, Liu X, Cadotte MW, Zhou SR (2020) Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos 129:1185–1195. https://doi.org/10.1111/oik.07032
doi: 10.1111/oik.07032
Johnson PT, Preston DL, Hoverman JT, Richgels KL (2013) Biodiversity decreases disease through predictable changes in host community competence. Nature 494:230–233. https://doi.org/10.1038/nature11883
doi: 10.1038/nature11883 pubmed: 23407539
Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498. https://doi.org/10.1111/j.1461-0248.2006.00885.x
doi: 10.1111/j.1461-0248.2006.00885.x pubmed: 16623733
Knutie SA, Wilkinson CL, Kohl KD, Rohr JR (2017) Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat Commun 8:86. https://doi.org/10.1038/s41467-017-00119-0
doi: 10.1038/s41467-017-00119-0 pubmed: 28729558 pmcid: 5519754
Lefcheck JS (2016) PiecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Mol Biol Evol 7:573–579. https://doi.org/10.1111/2041-210X.12512
doi: 10.1111/2041-210X.12512
Lind EM, Borer E, Seabloom E, Adler P, Bakker JD, Blumenthal DM et al (2013) Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecol Lett 16:513–521. https://doi.org/10.1111/ele.12078
doi: 10.1111/ele.12078 pubmed: 23347060
Liu X, Lyu SM, Zhou SR, Bradshaw CJA (2016a) Warming and fertilization alter the dilution effect of host diversity on disease severity. Ecology 97:1680–1689. https://doi.org/10.1890/15-1784.1
doi: 10.1890/15-1784.1 pubmed: 27859159
Liu X, Liang M, Etienne RS, Gilbert GS, Yu S (2016b) Phylogenetic congruence between subtropical trees and their associated fungi. Ecol Evol 6:8412–8422. https://doi.org/10.1002/ece3.2503
doi: 10.1002/ece3.2503 pubmed: 28031793 pmcid: 5167024
Liu X, Lyu SM, Sun DX, Bradshaw CJA, Zhou SR (2017) Species decline under nitrogen fertilization increases community-level competence of fungal diseases. Proc Biol Sci 284:20162621. https://doi.org/10.1098/rspb.2016.2621
doi: 10.1098/rspb.2016.2621 pubmed: 28123094 pmcid: 5310047
Liu X, Ma Z, Cadotte MW, Chen F, He J-S, Zhou SR (2019) Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. New Phytol 221:1574–1584. https://doi.org/10.1111/nph.15460
doi: 10.1111/nph.15460 pubmed: 30325035
Liu X, Chen LF, Liu M, Huang MJ, García-Guzmán G, Gilbert GS, Zhou SR (2020a) Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos 129:457–465. https://doi.org/10.1111/oik.07027
doi: 10.1111/oik.07027
Liu X, Lu Y, Zhang Z, Zhou SR (2020b) Foliar fungal diseases respond differently to nitrogen and phosphorus additions in Tibetan alpine meadows. Ecol Res 35:162–169. https://doi.org/10.1111/1440-1703.12064
doi: 10.1111/1440-1703.12064
Liu M, Mipam TD, Wang XX, Zhang P, Lin ZY, Liu X (2021) Contrast effects of grazing on foliar fungal diseases: pattern and potential mechanism. New Phytol 232:345–355. https://doi.org/10.1111/nph.17324
doi: 10.1111/nph.17324 pubmed: 33666239
Lu JY (1997) Plant Disease Diagnosis. China Agricultural Press, Beijing, China
Mipam TD, Zhong LL, Liu JQ, Miehe G, Tian LM (2019) Productive overcompensation of alpine meadows in response to yak grazing in the southeastern Qinghai-Tibet Plateau. Front Plant Sci 10:925. https://doi.org/10.3389/fpls.2019.00925
doi: 10.3389/fpls.2019.00925 pubmed: 31354782 pmcid: 6640541
Mipam TD, Chen SY, Liu JQ, Miehe G, Tian LM (2021) Short-term yak-grazing alters plant-soil stoichiometric relations in an alpine meadow on the eastern Tibetan Plateau. Plant Soil 458:125–137. https://doi.org/10.1007/s11104-019-04401-6
doi: 10.1007/s11104-019-04401-6
Mitchell CE, Tilman D, Groth JV (2002) Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83:1713–1726. https://doi.org/10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2
doi: 10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2
Mitchell CE, Reich PB, Tilman D, Groth JV (2003) Effects of elevated CO
doi: 10.1046/j.1365-2486.2003.00602.x
Mordecai EA (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr 81:429–441. https://doi.org/10.1890/10-2241.1
doi: 10.1890/10-2241.1
Ostfeld RS, Keesing F (2012) Effects of host diversity on infectious disease. Annu Rev Ecol Evol Syst 43:157–182. https://doi.org/10.1146/annurev-ecolsys-102710-145022
doi: 10.1146/annurev-ecolsys-102710-145022
Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey R, Suiter K, Gilbert GS (2015) Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–544. https://doi.org/10.1038/nature14372
doi: 10.1038/nature14372 pubmed: 25903634
R Development Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.r-project.org/
Rohr JR, Civitello DJ, Halliday FW, Hudson PJ, Lafferty KD, Wood CL, Mordecai EA (2020) Towards common ground in the biodiversity–disease debate. Nature Ecol Evol 4:24–33. https://doi.org/10.1038/s41559-019-1060-6
doi: 10.1038/s41559-019-1060-6
Rottstock T, Joshi J, Kummer V, Fischer M (2014) Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology 95:1907–1917. https://doi.org/10.1890/13-2317.1
doi: 10.1890/13-2317.1 pubmed: 25163123
Seabloom EW, Kinkel L, Borer ET, Hautier Y, Montgomery RA, Tilman D (2017) Food webs obscure the strength of plant diversity effects on primary productivity. Ecol Lett 20:505–512. https://doi.org/10.1111/ele.12754
doi: 10.1111/ele.12754 pubmed: 28295970
Smith B, Wilson JB (1996) A consumer’s guide to evenness indices. Oikos 76:70–82. https://doi.org/10.2307/3545749
doi: 10.2307/3545749
Thaler JS, Agrawal AA, Halitschke R (2010) Salicylate mediated interactions between pathogens and herbivores. Ecology 91:1075–1082. https://doi.org/10.1890/08-2347.1
doi: 10.1890/08-2347.1 pubmed: 20462121
Trenbath BR (1977) Interactions among diverse hosts and diverse parasites. Ann N Y Acad Sci 287:124–150. https://doi.org/10.1111/j.1749-6632.1977.tb34236.x
doi: 10.1111/j.1749-6632.1977.tb34236.x
Tucker CM, Cadotte MW (2013) Unifying conservation biodiversity measures. Divers Distrib 19:845–854. https://doi.org/10.1111/ddi.12087
doi: 10.1111/ddi.12087
Wang YXG, Matson KD, Prins HHT, Gort G, Awada L, Huang ZYX, de Boer WF (2019) Phylogenetic structure of wildlife assemblages shapes patterns of infectious livestock diseases in Africa. Funct Ecol 33:1332–1341. https://doi.org/10.1111/1365-2435.13311
doi: 10.1111/1365-2435.13311
Wood CL, Lafferty KD (2013) Biodiversity and disease: a synthesis of ecological perspectives on lyme disease transmission. Trends in Ecol Evol 28:239–247. https://doi.org/10.1016/j.tree.2012.10.011
doi: 10.1016/j.tree.2012.10.011
Yan RR, Xin XP, Yan YC, Wang X, Zhang BH, Yang GX et al (2014) Impacts of differing grazing rates on canopy structure and species composition in hulunber meadow steppe. Rangel Ecol Manage 68:54–64. https://doi.org/10.1016/j.rama.2014.12.001
doi: 10.1016/j.rama.2014.12.001
You MP, Barbetti MJ (2018) Manipulating the ecosystem enables management of soilborne pathogen complexes in annual legume forage systems. Plant Pathol 68:454–469. https://doi.org/10.1111/ppa.12963
doi: 10.1111/ppa.12963
Zhang Y, Chen T, Nan Z, Christensen MJ (2019) Cattle grazing alters the interaction of seed-borne fungi and two foliar pathogens of leymus chinensis in a meadow steppe. Eur J Plant Pathol 15:207–218. https://doi.org/10.1007/s10658-019-01764-5
doi: 10.1007/s10658-019-01764-5
Zhang Y, Nan Z, Xin X (2020) Response of plant diseases to beef cattle grazing intensity in Hulunber grassland. Plant Dis 104(11):2905–2913
doi: 10.1094/PDIS-03-20-0683-RE
Zhang R (2009) Survey and identification of the alpine grassland's major fungal diseases in Gannan region of Gansu province. Master Thesis. Gansu Agricultural University, Lanzhou, Gansu, China.
Zhu Y, Chen HR, Fan JH, Wang YY, Li Y, Chen JB et al (2000) Genetic diversity and disease control in rice. Nature 406:718–722. https://doi.org/10.1038/35021046
doi: 10.1038/35021046 pubmed: 10963595

Auteurs

Tserang Donko Mipam (TD)

Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, People's Republic of China.

Fei Chen (F)

State Key Laboratory of Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Liming Tian (L)

Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China.

Pei Zhang (P)

Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China.

Mengjiao Huang (M)

Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China.

Lifan Chen (L)

School of Arts and Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.

Xingxing Wang (X)

State Key Laboratory of Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Peng Zhang (P)

State Key Laboratory of Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Ziyuan Lin (Z)

State Key Laboratory of Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Xiang Liu (X)

State Key Laboratory of Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China. lx@lzu.edu.cn.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH