DEMETHYLATION REGULATOR 1 regulates DNA demethylation of the nuclear and mitochondrial genomes.
DEMR1
DNA demethylation
ROS1
mitochondria
plant development
Journal
Journal of integrative plant biology
ISSN: 1744-7909
Titre abrégé: J Integr Plant Biol
Pays: China (Republic : 1949- )
ID NLM: 101250502
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
received:
07
07
2022
accepted:
10
10
2022
pubmed:
13
10
2022
medline:
3
1
2023
entrez:
12
10
2022
Statut:
ppublish
Résumé
Active DNA demethylation effectively modulates gene expression during plant development and in response to stress. However, little is known about the upstream regulatory factors that regulate DNA demethylation. We determined that the demethylation regulator 1 (demr1) mutant exhibits a distinct DNA methylation profile at selected loci queried by methylation-sensitive polymerase chain reaction and globally based on whole-genome bisulfite sequencing. Notably, the transcript levels of the DNA demethylase gene REPRESSOR OF SILENCING 1 (ROS1) were lower in the demr1 mutant. We established that DEMR1 directly binds to the ROS1 promoter in vivo and in vitro, and the methylation level in the DNA methylation monitoring sequence of ROS1 promoter decreased by 60% in the demr1 mutant. About 40% of the hyper-differentially methylated regions (DMRs) in the demr1 mutant were shared with the ros1-4 mutant. Genetic analysis indicated that DEMR1 acts upstream of ROS1 to positively regulate abscisic acid (ABA) signaling during seed germination and seedling establishment stages. Surprisingly, the loss of DEMR1 function also caused a rise in methylation levels of the mitochondrial genome, impaired mitochondrial structure and an early flowering phenotype. Together, our results show that DEMR1 is a novel regulator of DNA demethylation of both the nuclear and mitochondrial genomes in response to ABA and plant development in Arabidopsis.
Substances chimiques
Arabidopsis Proteins
0
Protein-Tyrosine Kinases
EC 2.7.10.1
Nuclear Proteins
0
Proto-Oncogene Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2344-2360Informations de copyright
© 2022 Institute of Botany, Chinese Academy of Sciences.
Références
Bemer, M. (2018). Unraveling the complex epigenetic mechanisms that regulate gene activity. Methods Mol. Biol. 1675: 205-231.
Blanch, M., Mosquera, J.L., Ansoleaga, B., Ferrer, I., and Barrachina, M. (2016). Altered mitochondrial DNA methylation pattern in alzheimer disease-related pathology and in parkinson disease. Am. J. Pathol. 186: 385-397.
Burzio, V.A., Villota, C., Villegas, J., Landerer, E., Boccardo, E., Villa, L.L., Martinez, R., Lopez, C., Gaete, F., Toro, V., Rodriguez, X., and Burzio, L.O. (2009). Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells. Proc. Natl. Acad. Sci. U.S.A. 106: 9430-9434.
Cao, X., and Jacobsen, S.E. (2002). Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc. Natl. Acad. Sci. U.S.A. 99 (Suppl 4): 16491-16498.
Chang, Y.N., Zhu, C., Jiang, J., Zhang, H., Zhu, J.K., and Duan, C.G. (2020). Epigenetic regulation in plant abiotic stress responses. J. Integr. Plant Biol. 62: 563-580.
Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890.
Cheng, J., Xu, L., Berger, V., Bruckmann, A., Yang, C., Schubert, V., Grasser, K.D., Schnittger, A., Zheng, B., and Jiang, H. (2022). H3K9 demethylases IBM1 and JMJ27 are required for male meiosis in Arabidopsis thaliana. New Phytol. 235: 2252-2269.
Cheng, Z., and Almeida, F.A. (2014). Mitochondrial alteration in type 2 diabetes and obesity: An epigenetic link. Cell Cycle 13: 890-897.
Choi, K., Park, C., Lee, J., Oh, M., Noh, B., and Lee, I. (2007). Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development 134: 1931-1941.
Cimmino, L., Dawlaty, M.M., Ndiaye-Lobry, D., Yap, Y.S., Bakogianni, S., Yu, Y., Bhattacharyya, S., Shaknovich, R., Geng, H., Lobry, C., Mullenders, J., King, B., Trimarchi, T., Aranda-Orgilles, B., Liu, C., Shen, S., Verma, A.K., Jaenisch, R., and Aifantis, I. (2015). TET1 is a tumor suppressor of hematopoietic malignancy. Nat. Immunol. 16: 653-662.
Deal, R.B., Kandasamy, M.K., McKinney, E.C., and Meagher, R.B. (2005). The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis. Plant Cell 17: 2633-2646.
Duan, C.G., Wang, X., Xie, S., Pan, L., Miki, D., Tang, K., Hsu, C.C., Lei, M., Zhong, Y., Hou, Y.J., Wang, Z., Zhang, Z., Mangrauthia, S.K., Xu, H., Zhang, H., Dilkes, B., Tao, W.A., and Zhu, J.K. (2017). A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res. 27: 226-240.
Finnegan, E.J., and Dennis, E.S. (1993). Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res. 21: 2383-2388.
Finnegan, E.J., and Kovac, K.A. (2000). Plant DNA methyltransferases. Plant Mol. Biol. 43: 189-201.
Forgione, I., Woloszynska, M., Pacenza, M., Chiappetta, A., Greco, M., Araniti, F., Abenavoli, M.R., Van Lijsebettens, M., Bitonti, M.B., and Bruno, L. (2019). Hypomethylated drm1 drm2 cmt3 mutant phenotype of Arabidopsis thaliana is related to auxin pathway impairment. Plant Sci. 280: 383-396.
Gong, Z., Morales-Ruiz, T., Ariza, R.R., Roldan-Arjona, T., David, L., and Zhu, J.K. (2002). ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111: 803-814.
Goto, Y., Yamagishi, Y., Shintomi-Kawamura, M., Abe, M., Tanno, Y., and Watanabe, Y. (2017). Pds5 regulates sister-chromatid cohesion and chromosome bi-orientation through a conserved protein interaction module. Curr. Biol. 27: 1005-1012.
Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 32: 2847-2849.
Haag, J.R., and Pikaard, C.S. (2011). Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 12: 483-492.
Haag, J.R., Ream, T.S., Marasco, M., Nicora, C.D., Norbeck, A.D., Pasa-Tolic, L., and Pikaard, C.S. (2012). In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol. Cell 48: 811-818.
He, L., Huang, H., Bradai, M., Zhao, C., You, Y., Ma, J., Zhao, L., Lozano-Duran, R., and Zhu, J.K. (2022). DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat. Commun. 13: 1335.
Huang, L.C., Hsiao, L.J., Pu, S.Y., Kuo, C.I., Huang, B.L., Tseng, T.C., Huang, H.J., and Chen, Y.T. (2012). DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens. Physiol. Plant. 145: 360-368.
Kankel, M.W., Ramsey, D.E., Stokes, T.L., Flowers, S.K., Haag, J.R., Jeddeloh, J.A., Riddle, N.C., Verbsky, M.L., and Richards, E.J. (2003). Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163: 1109-1122.
Kim, J.S., Lim, J.Y., Shin, H., Kim, B.G., Yoo, S.D., Kim, W.T., and Huh, J.H. (2019). ROS1-dependent DNA demethylation is required for ABA-inducible NIC3 expression. Plant Physiol. 179: 1810-1821.
Kumar, S., and Mohapatra, T. (2021). Dynamics of DNA methylation and its functions in plant growth and development. Front. Plant Sci. 12: 596236.
Lang, Z., Lei, M., Wang, X., Tang, K., Miki, D., Zhang, H., Mangrauthia, S.K., Liu, W., Nie, W., Ma, G., Yan, J., Duan, C.G., Hsu, C.C., Wang, C., Tao, W.A., Gong, Z., and Zhu, J.K. (2015). The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing. Mol. Cell 57: 971-983.
Law, J.A., and Jacobsen, S.E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11: 204-220.
Lei, M., Zhang, H., Julian, R., Tang, K., Xie, S., and Zhu, J.K. (2015). Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 112: 3553-3557.
Li, C., Zhang, C., Rong, T., Lu, Y., Wang, J., Lan, H., and Cao, M. (2017). Insight into the maize CMS-associated mitochondrial-nuclear interaction at the DNA methylation level. Can. J. Plant Sci. 97: 665-673.
Li, Z., Peng, J., Wen, X., and Guo, H. (2013). Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25: 3311-3328.
Liu, P., Nie, W.F., Xiong, X., Wang, Y., Jiang, Y., Huang, P., Lin, X., Qin, G., Huang, H., Niu, Q., Du, J., Lang, Z., Lozano-Duran, R., and Zhu, J.K. (2021). A novel protein complex that regulates active DNA demethylation in Arabidopsis. J. Integr. Plant Biol. 63: 772-786.
Liu, R., and Lang, Z. (2020). The mechanism and function of active DNA demethylation in plants. J. Integr. Plant Biol. 62: 148-159.
Lu, Y., Dai, J., Yang, L., La, Y., Zhou, S., Qiang, S., Wang, Q., Tan, F., Wu, Y., Kong, W., and La, H. (2020). Involvement of MEM1 in DNA demethylation in Arabidopsis. Plant Mol. Biol. 102: 307-322.
Muniandy, K., Tan, M.H., Shehnaz, S., Song, B.K., Ayub, Q., and Rahman, S. (2020). Cytosine methylation of rice mitochondrial DNA from grain and leaf tissues. Planta 251: 57.
Nie, W.F., Lei, M., Zhang, M., Tang, K., Huang, H., Zhang, C., Miki, D., Liu, P., Yang, Y., Wang, X., Zhang, H., Lang, Z., Liu, N., Xu, X., Yelagandula, R., Zhang, H., Wang, Z., Chai, X., Andreucci, A., Yu, J.Q., Berger, F., Lozano-Duran, R., and Zhu, J.K. (2019). Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A.116: 16641-16650.
Palomar, V.M., Garciarrubio, A., Garay-Arroyo, A., Martinez-Martinez, C., Rosas-Bringas, O., Reyes, J.L., and Covarrubias, A.A. (2021). The canonical RdDM pathway mediates the control of seed germination timing under salinity. Plant J. 105: 691-707.
Peng, M., Cui, Y., Bi, Y.M., and Rothstein, S.J. (2006). AtMBD9: A protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis. Plant J. 46: 282-296.
Popova, O.V., Dinh, H.Q., Aufsatz, W., and Jonak, C. (2013). The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol. Plant 6: 396-410.
Pradillo, M., Knoll, A., Oliver, C., Varas, J., Corredor, E., Puchta, H., and Santos, J.L. (2015). Involvement of the cohesin cofactor PDS5 (SPO76) during meiosis and DNA repair in Arabidopsis thaliana. Front. Plant Sci. 6: 1034.
Qian, W., Miki, D., Zhang, H., Liu, Y., Zhang, X., Tang, K., Kan, Y., La, H., Li, X., Li, S., Zhu, X., Shi, X., Zhang, K., Pontes, O., Chen, X., Liu, R., Gong, Z., and Zhu, J.K. (2012). A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336: 1445-1448.
Reynolds, E.S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208-212.
Sadakierska-Chudy, A., Kostrzewa, R.M., and Filip, M. (2015). A comprehensive view of the epigenetic landscape part I: DNA methylation, passive and active DNA demethylation pathways and histone variants. Neurotox. Res. 27: 84-97.
Saleh, A., Alvarez-Venegas, R., and Avramova, Z. (2008). An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat. Protoc. 3: 1018-1025.
Sharma, N., Pasala, M.S., and Prakash, A. (2019). Mitochondrial DNA: Epigenetics and environment. Environ. Mol. Mutagen. 60: 668-682.
Shock, L.S., Thakkar, P.V., Peterson, E.J., Moran, R.G., and Taylor, S.M. (2011). DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl. Acad. Sci. U.S.A. 108: 3630-3635.
Simkova, H. (1998). Methylation of mitochondrial DNA in carrot (Daucus carota L.). Plant Cell Rep. 17: 220-224.
Sloan, D.B., Wu, Z., and Sharbrough, J. (2018). Correction of persistent errors in Arabidopsis reference mitochondrial genomes. Plant Cell 30: 525-527.
Stoccoro, A., and Coppede, F. (2021). Mitochondrial DNA methylation and human diseases. Int. J. Mol. Sci. 22: 4594.
Tong, H., Zhang, L., Gao, J., Wen, S., Zhou, H., and Feng, S. (2017). Methylation of mitochondrial DNA displacement loop region regulates mitochondrial copy number in colorectal cancer. Mol. Med. Rep. 16: 5347-5353.
Vos, S., Nawrot, T.S., Martens, D.S., Byun, H.M., and Janssen, B.G. (2021). Mitochondrial DNA methylation in placental tissue: A proof of concept study by means of prenatal environmental stressors. Epigenetics 16: 121-131.
Wierzbicki, A.T., Haag, J.R., and Pikaard, C.S. (2008). Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135: 635-648.
Wierzbicki, A.T., Ream, T.S., Haag, J.R., and Pikaard, C.S. (2009). RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41: 630-634.
Xiao, X., Zhang, J., Li, T., Fu, X., Satheesh, V., Niu, Q., Lang, Z., Zhu, J.K., and Lei, M. (2019). A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. J. Integr. Plant Biol. 61: 110-119.
Xu, R., Wang, Y., Zheng, H., Lu, W., Wu, C., Huang, J., Yan, K., Yang, G., and Zheng, C. (2015). Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J. Exp. Bot. 66: 5997-6008.
Zemach, A., Kim, M.Y., Hsieh, P.H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., Harmer, S.L., and Zilberman, D. (2013). The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153: 193-205.
Zhai, J., Bischof, S., Wang, H., Feng, S., Lee, T.F., Teng, C., Chen, X., Park, S.Y., Liu, L., Gallego-Bartolome, J., Liu, W., Henderson, I.R., Meyers, B.C., Ausin, I., and Jacobsen, S.E. (2015). A one precursor one siRNA model for pol IV-dependent siRNA biogenesis. Cell 163: 445-455.
Zhang, H., Lang, Z., and Zhu, J.K. (2018). Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19: 489-506.
Zhang, H., Zhu, J., Gong, Z., and Zhu, J.K. (2022). Abiotic stress responses in plants. Nat. Rev. Genet. 23: 104-119.
Zhang, N., Coutinho, L.E., and Pati, D. (2021). PDS5A and PDS5B in cohesin function and human disease. Int. J. Mol. Sci. 22: 5868.
Zhong, X., Du, J., Hale, C.J., Gallego-Bartolome, J., Feng, S., Vashisht, A.A., Chory, J., Wohlschlegel, J.A., Patel, D.J., and Jacobsen, S.E. (2014). Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157: 1050-1060.
Zhu, J.K. (2009). Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43: 143-166.