The Brazilian Amazonian rainforest harbors a high diversity of yeasts associated with rotting wood, including many candidates for new yeast species.

Brazilian Amazonian forests lignocellulosic sugars new yeast species rotting-wood yeast diversity

Journal

Yeast (Chichester, England)
ISSN: 1097-0061
Titre abrégé: Yeast
Pays: England
ID NLM: 8607637

Informations de publication

Date de publication:
02 2023
Historique:
revised: 20 12 2022
received: 14 09 2022
accepted: 27 12 2022
pubmed: 30 12 2022
medline: 7 2 2023
entrez: 29 12 2022
Statut: ppublish

Résumé

This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d-xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species.

Identifiants

pubmed: 36582015
doi: 10.1002/yea.3837
doi:

Substances chimiques

Cellulose 9004-34-6

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

84-101

Informations de copyright

© 2022 John Wiley & Sons Ltd.

Références

Ali, S. S., Wu, J., Xie, R., Zhou, F., Sun, J., & Huang, M. (2017). Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS One, 12(7), e0181141.
Alvarez-Perez, S., Mateos, A., Dominguez, L., Martinez-Nevado, E., Rodriguez-Bertos, A., Blanco, J. L., & Garcia, M. E. (2012). First isolation of the anamorph of Kazachstania heterogenica from a fatal infection in a primate host. Medical Mycology, 50(2), 193-196.
Alves, R. C., Tres, A., Soares, R. V., Wendling, W. T., & Tetto, A. F. (2019). Classificação climática para o estado do Amazonas segundo as zonas de vida de Holdridge. Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences, 62(4), 1-12.
Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034-6039.
Araújo, F. V., Rosa, C. A., Freitas, L. F. D., Lachance, M. A., Vaughan-Martini, A., Mendonça-Hagler, L. C., & Hagler, A. N. (2012). Kazachstania bromeliacearum sp. nov., a yeast species from water tanks of bromeliads. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_4), 1002-1006.
Arguello, J. R., Sellanes, C., Lou, Y. R., & Raguso, R. A. (2013). Can yeast (S. cerevisiae) metabolic volatiles provide polymorphic signaling? PloS One, 8(8), e70219.
Avolio, M. L., Carroll, I. T., Collins, S. L., Houseman, G. R., Hallett, L. M., Isbell, F., and Koerner, S. E., Komatsu, K. J., Smith, M. D., & Wilcox, K. R. (2019). A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere, 10(10), e02881.
Barros, K. O., Garcia-Acero, A. M., & Rosa, C. A. (2020). Non-conventional yeasts with potential for production of second-generation ethanol. In G. R. Carey (Ed.), Biofuels: Advances in research and applications (pp. 109-150). Nova Science Publishers.
Barros, K. O., Souza, R. M., Palladino, F., Cadete, R. M., Santos, A. R. O., Goes-Neto, A., Berkov, A., Zilli, J. E., Vital, M. J. S., Lachance, M. A., & Rosa, C. A. (2021). Cyberlindnera dasilvae sp. nov., a xylitol-producing yeast species isolated from rotting wood and frass of cerambycid larva. International Journal of Systematic and Evolutionary Microbiology, 71(9), 004986.
Bazoti, S. F., Golunski, S., Siqueira, D. P., Scapini, T., Barrilli, É. T., Mayer, D. A., Barros, K. O., Rosa, C. A., Stambuk, B. U., Alves, Jr., S. L., Valério, A., de Oliveira, D., & Treichel, H. (2017). Second-generation ethanol from non-detoxified sugarcane hydrolysate by a rotting wood isolated yeast strain. Bioresource Technology, 244(1), 582-587.
Becher, P. G., Hagman, A., Verschut, V., Chakraborty, A., Rozpędowska, E., Lebreton, S., Bengtsson, M., Flick, G., Witzgall, P., & Piškur, J. (2018). Chemical signaling and insect attraction is a conserved trait in yeasts. Ecology and Evolution, 8(5), 2962-2974.
Bellutti, N., Gallmetzer, A., Innerebner, G., Schmidt, S., Zelger, R., & Koschier, E. H. (2018). Dietary yeast affects preference and performance in Drosophila suzukii. Journal of Pest Science, 91(2), 651-660.
Bensasson, D., Dicks, J., Ludwig, J. M., Bond, C. J., Elliston, A., Roberts, I. N., & James, S. A. (2019). Diverse lineages of Candida albicans live on old oaks. Genetics, 211(1), 277-288.
Bhardwaj, N., Kumar, B., & Verma, P. (2019). A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6(1), 40.
Boontham, W., Limtong, S., Rosa, C. A., Lopes, M. R., Vital, M. J. S., & Srisuk, N. (2017). Cyberlindnera tropicalis fa, sp. nov., a novel yeast isolated from tropical regions. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2569-2573.
Bredin, Y. K., Hawes, J. E., Peres, C. A., & Haugaasen, T. (2020). Structure and composition of Terra Firme and seasonally flooded Várzea forests in the Western Brazilian Amazon. Forests, 11(12), 1361.
Cadete, R. M., Cheab, M. A. M., Santos, R. O., Safar, S. V. B., Zilli, J. E., Vital, M. J. S., Basso, L. C., Lee, C. F., Kurtzman, C. P., Lachance, M. A., & Rosa, C. A. (2015). Cyberlindnera xylosilytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials. International Journal of Systematic and Evolutionary Microbiology, 65(Pt 9), 2968-2974.
Cadete, R. M., de Las Heras, A. M., Sandström, A. G., Ferreira, C., Gírio, F., Gorwa-Grauslund, M. F., & Fonseca, C. (2016b). Exploring xylose metabolism in spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnology for Biofuels, 9(1), 1-14.
Cadete, R. M., Lopes, M. R., & Rosa, C. A. (2017). Yeasts associated with decomposing plant material and rotting wood. In P. Buzzini, M. A. Lachance, & A. Yurkov (Eds.), Yeasts in natural ecosystems: Diversity (pp. 265-292). Springer.
Cadete, R. M., Melo, M. A., Dussán, K. J., Rodrigues, R. C. L. B., Silva, S. S., Zilli, J. E., Vital, M. J. S., Gomes, F. C. O., Lachance, M. A., & Rosa, C. A. (2012). Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian forest. PLoS One, 7, e43135.
Cadete, R. M., Melo, M. A., Lopes, M. R., Pereira, G. M. D., Zilli, J. E., Vital, M. J. S., Gomes, F. C. O., Lachance, M. A., & Rosa, C. A. (2012). Candida amazonensis sp. nov., an ascomycetous yeast isolated from rotting wood in the Amazonian forest. International Journal of Systematic and Evolutionary Microbiology, 62(Pt 6), 1438-1440.
Cadete, R. M., Melo-Cheab, M. A., Viana, A. L., Oliveira, E. S., Fonseca, C., & Rosa, C. A. (2016a). The yeast Scheffersomyces amazonensis is an efficient xylitol producer. World Journal of Microbiology and Biotechnology, 32(12), 1-5.
Cadete, R. M., & Rosa, C. A. (2018). The yeasts of the genus Spathaspora: Potential candidates for second-generation biofuel production. Yeast, 35(2), 191-199.
Carvalho, J. K., Panatta, A. A. S., Silveira, M. A. D., Tav, C., Johann, S., Rodrigues, M. L. F., & Martins, C. V. B. (2021). Yeasts isolated from a lotic continental environment in Brazil show potential to produce amylase, cellulase and protease. Biotechnology Reports, 30, e00630.
Chai, C. Y., Gao, W. L., Yan, Z. L., Hui, F. L., Chai, C. Y., Gao, W. L., Yan, Z. L., & Hui, F. L. (2022). Four new species of trichomonascaceae (Saccharomycetales, Saccharomycetes) from Central China. MycoKeys, 90, 1-18.
Cheng, Y. T., & Yang, C. F. (2016). Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. Journal of the Taiwan Institute of Chemical Engineers, 61, 270-275.
Christiaens, J. F., Franco, L. M., Cools, T. L., De Meester, L., Michiels, J., Wenseleers, T., Hassan, B. A., Yaksi, E., & Verstrepen, K. J. (2014). The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Reports, 9(2), 425-432.
Daniel, H. M., Lachance, M. A., & Kurtzman, C. P. (2014). On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie Van Leeuwenhoek, 106(1), 67-84.
Food and Agricultural Organization. (2022, September 2). FAOSTAT. https://www.fao.org/faostat/en/#home
Geijer, C., Faria-Oliveira, F., Moreno, A. D., Stenberg, S., Mazurkewich, S., & Olsson, L. (2020). Genomic and transcriptomic analysis of Candida intermedia reveals the genetic determinants for its xylose-converting capacity. Biotechnology for Biofuels, 13(1), 48.
Gomes, F. C. O., Safar, S. V. B., Marques, A. R., Medeiros, A. O., Santos, A. R. O., Carvalho, C., Lachance, M. A., Sampaio, J. P., & Rosa, C. A. (2015). The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis fa, sp. nov. Antonie Van Leeuwenhoek, 107(2), 597-611.
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307-321.
Guzmán, B., Lachance, M. A., & Herrera, C. M. (2013). Phylogenetic analysis of the angiosperm-floricolous insect-yeast association: Have yeast and angiosperm lineages co-diversified? Molecular Phylogenetics and Evolution, 68(2), 161-175.
Hamby, K. A., & Becher, P. G. (2016). Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. Journal of Pest Science, 89(3), 621-630.
Hamidi, M., Gholipour, A. R., Delattre, C., Sesdighi, F., Mirzaei Seveiri, R., Pasdaran, A., Kheirandish, S., Pierre, G., Safarzadeh Kozani, P., Safarzadeh Kozani, P., & Karimitabar, F. (2020). Production, characterization and biological activities of exopolysaccharides from a new cold-adapted yeast: Rhodotorula mucilaginosa sp. GUMS16. International Journal of Biological Macromolecules, 151, 268-277.
Han, S. M., Kim, J. Y., & Lee, J. S. (2019). Isolation of wild yeasts from the water and riverside soil of Geumgang midstream in Sejong city, Korea, and characterization of unrecorded wild yeasts. The Korean Journal of Mycology, 47(1), 51-61.
Handel, S., Wang, T., Yurkov, A. M., & König, H. (2016). Sugiyamaella mastotermitis sp. nov. and Papiliotrema odontotermitis fa, sp. nov. from the gut of the termites Mastotermes darwiniensis and Odontotermes obesus. International Journal of Systematic and Evolutionary Microbiology, 66(11), 4600-4608.
Hittinger, C. T. (2013). Saccharomyces diversity and evolution: A budding model genus. Trends in Genetics, 29(5), 309-317.
Hui, F. L., Chen, L., Li, Z. H., Niu, Q. H., & Ke, T. (2013). Metschnikowia henanensis sp. nov., a new anamorphic yeast species isolated from rotten wood in China. Antonie Van Leeuwenhoek, 103(4), 899-904.
IBGE. (2020, August 30). IBGE Educa Jovens. https://educa.ibge.gov.br/jovens/conheca-o-brasil/territorio/18307-biomas-brasileiros.html
Ioannou, P., Vamvoukaki, R., & Samonis, G. (2019). Rhodotorula species infections in humans: A systematic review. Mycoses, 62(2), 90-100.
Jacques, N., Sarilar, V., Urien, C., Lopes, M. R., Morais, C. G., Uetanabaro, A., Tinsley, C. R., Rosa, C. A., Sicard, D., & Casaregola, S. (2016). Three novel ascomycetous yeast species of the Kazachstania clade, Kazachstania saulgeensis sp. nov., Kazachstania serrabonitensis sp. nov. and Kazachstania australis sp. nov. reassignment of Candida humilis to Kazachstania humilis fa comb. nov. and Candida pseudohumilis to Kazachstania pseudohumilis fa comb. nov. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5192-5200.
Januário da Costa Neto, D., & Benevides de Morais, P. (2020). The vectoring of Starmerella species and other yeasts by stingless bees in a neotropical savanna. Fungal Ecology, 47, 100973.
Kim, B. R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K. H., Lee, J. H., Kim, H. B., & Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27(12), 2089-2093.
Kumar, A., & Ram, C. (2021). Agave biomass: A potential resource for production of value-added products. Environmental Sustainability, 4(2), 245-259.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874.
Kurtzman, C. P., Fell, J. W., Boekhout, T., & Robert, V. (2011). Methods for isolation, phenotypic characterization and maintenance of yeasts. In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts, a taxonomic study (5th ed., pp. 87-110). Elsevier.
Kurtzman, C. P., & Robnett, C. J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek, 73(4), 331-371.
Kurtzman, C. P., Scheffersomyces, K., & Suzuki, M. (2010). The yeasts, a taxonomic study (5th ed., Vol. 1, pp. 773-777). Elsevier.
Lachance, M. A., Boekhout, T., Scorzetti, T., Fell, J. W., & Kurtzman, C. P. (1923). Candida berkhout. In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts, a taxonomic study (5th ed., Vol. 1, pp. 987-1278). Elsevier.
Lachance, M. A., Bowles, J. M., Starmer, W. T., & Barker, J. S. F. (1999). Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Canadian Journal of Microbiology, 45(2), 172-177.
Lara, C. A., Santos, R. O., Cadete, R. M., Ferreira, C., Marques, S., Gírio, F., Oliveira, E. S., Rosa, C. A., & Fonseca, C. (2014). Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Antonie Van Leeuwenhoek, 105(6), 1107-1119.
Lee, C. F., Yao, C. H., Liu, Y. R., Young, S. S., & Chang, K. S. (2009). Kazachstania wufongensis sp. nov., an ascosporogenous yeast isolated from soil in Taiwan. Antonie Van Leeuwenhoek, 95(4), 335-341.
Lewis, M. T., & Hamby, K. A. (2019). Differential impacts of yeasts on feeding behavior and development in larval Drosophila suzukii (Diptera: Drosophilidae). Scientific Reports, 9(1), 13370.
Libkind, D., Brizzio, S., Ruffini, A., Gadanho, M., van Broock, M., & Paulo Sampaio, J. (2003). Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek, 84(4), 313-322.
Libkind, D., Brizzio, S., & Van Broock, M. (2004). Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a Patagonian high-altitude lake. Folia Microbiologica, 49(1), 19-25.
Limtong, S., Yongmanitchai, W., Kawasaki, H., & Fujiyama, K. (2009). Wickerhamomyces edaphicus sp. nov. and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. FEMS Yeast Research, 9(3), 504-510.
Liu, Y., Cruz-Morales, P., Zargar, A., Belcher, M. S., Pang, B., Englund, E., Dan, Q., Yin, K., & Keasling, J. D. (2021). Biofuels for a sustainable future. Cell, 184(6), 1636-1647.
Ljunggren, J., Borrero-Echeverry, F., Chakraborty, A., Lindblom, T. U., Hedenström, E., Karlsson, M., Witzgall, P., & Bengtsson, M. (2019). Yeast volatomes differentially affect larval feeding in an insect herbivore. Applied and Environmental Microbiology, 85(21), e01761-19.
Lopes, M. R., Lara, C. A., Moura, M. E., Uetanabaro, A. P. T., Morais, P. B., Vital, M. J., & Rosa, C. A. (2018a). Characterisation of the diversity and physiology of cellobiose-fermenting yeasts isolated from rotting wood in Brazilian ecosystems. Fungal Biology, 122(7), 668-676.
Lopes, M. R., Batista, T. M., Franco, G. R., Ribeiro, L. R., Santos, A. R., Furtado, C., & Rosa, C. A. (2018b). Scheffersomyces stambukii fa, sp. nov., a D-xylose-fermenting species isolated from rotting wood. International Journal of Systematic and Evolutionary Microbiology, 68(7), 2306-2312.
Lopes, M. R., Morais, C. G., Kominek, J., Cadete, R. M., Soares, M. A., Uetanabaro, A. P. T., Fonseca, C., Lachance, M. A., Hittinger, C. T., & Rosa, C. A. (2016). Genomic analysis and D-xylose fermentation of three novel spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae fa, sp. nov. and Spathaspora gorwiae fa, sp. nov. FEMS Yeast Research, 16(4), fow044.
Mankowski, M. E., Morrell, J. J., & Lebow, P. K. (2021). Effects on brood development in the carpenter ant Camponotus vicinus Mayr after exposure to the yeast associate Schwanniomyces polymorphus Kloecker. Insects, 12(6), 520.
McCabe, D. J. (2011). Sampling biological communities. Nature Education Knowledge, 3(10), 63.
Morais, C. G., Batista, T. M., Kominek, J., Borelli, B. M., Furtado, C., Moreira, R. G., Franco, G. R., Rosa, L. H., Fonseca, C., Hittinger, C. T., Lachance, M. A., & Rosa, C. A. (2017). Spathaspora boniae sp. nov., a D-xylose-fermenting species in the Candida albicans/Lodderomyces clade. International Journal of Systematic and Evolutionary Microbiology, 67(10), 3798-3805.
Morais, C. G., Cadete, R. M., Uetanabaro, A. P. T., Rosa, L. H., Lachance, M. A., & Rosa, C. A. (2013). D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic rainforest habitats in Brazil. Fungal Genetics and Biology, 60, 19-28.
Morais, C. G., Sena, L. M. F., Lopes, M. R., Santos, A. R. O., Barros, K. O., Alves, C. R., Uetanabaro, A. P. T., Lachance, M. A., & Rosa, C. A. (2020). Production of ethanol and xylanolytic enzymes by yeasts inhabiting rotting wood isolated in sugarcane bagasse hydrolysate. Fungal Biology, 124(7), 639-647.
Moreira, L. R. S., & Filho, E. X. F. (2016). Insights into the mechanism of enzymatic hydrolysis of xylan. Applied Microbiology and Biotechnology, 100(12), 5205-5214.
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.
Myster, R. W. (2016). The physical structure of forests in the Amazon Basin: A review. The Botanical Review, 82(4), 407-427.
Nakanishi, S. C., Soares, L. B., Biazi, L. E., Nascimento, V. M., Costa, A. C., Rocha, G. J. M., & Ienczak, J. L. (2017). Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnology and Bioengineering, 114(10), 2211-2221.
Narisetty, V., Castro, E., Durgapal, S., Coulon, F., Jacob, S., Kumar, D., Kumar Awasthi, M., Kishore Pant, K., Parameswaran, B., & Kumar, V. (2021). High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates. Bioresource Technology, 342, 126005.
Nguyen, N. H., Suh, S. O., Marshall, C. J., & Blackwell, M. (2006). Morphological and ecological similarities: Wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycological Research, 110(10), 1232-1241.
O'Donnell, K. (1993). Fusarium and its near relatives. In D. R. Reynolds & J. W. Taylor (Eds.), The fungal holomorph: Mitotic, meiotic and pleomorphic speciation in fungal systematic (pp. 225-233). CAB International.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solym, P., Stevens, H., Szoecs, E., & Wagner, E. vegan: Community Ecology Package, 2020.
Opulente, D. A., Langdon, Q. K., Buh, K. V., Haase, M. A. B., Sylvester, K., Moriarty, R. V., Jarzyna, M., Considine, S. L., Schneider, R. M., & Hittinger, C. T. (2019). Pathogenic budding yeasts isolated outside of clinical settings. FEMS Yeast Research, 19(3), foz032.
Palladino, F., Rodrigues, R. C., Cadete, R. M., Barros, K. O., & Rosa, C. A. (2021). Novel potential yeast strains for the biotechnological production of xylitol from sugarcane bagasse. Biofuels, Bioproducts and Biorefining, 15(3), 690-702.
Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528.
Parolin, P., Ferreira, L. V., Albernaz, A. L. K. M., & Almeida, S. S. (2004). Tree species distribution in Várzea forests of Brazilian Amazonia. Folia Geobotanica, 39(4), 371-383.
Peay, K. G., Baraloto, C., & Fine, P. V. (2013). Strong coupling of plant and fungal community structure across Western Amazonian rainforests. The ISME Journal, 7(9), 1852-1861.
Péter, G., Takashima, M., & Čadež, N. (2017). Yeast habitats: different but global. In P. Buzzini, M. A. Lachance, & A. Yurkov (Eds.), Yeasts in natural ecosystems: Diversity (pp. 39-71). Springer.
Ritter, C. D., Dunthorn, M., Anslan, S., Lima, V. X., Tedersoo, L., Nilsson, R. H., & Antonelli, A. (2020). Advancing biodiversity assessments with environmental DNA: Long-read technologies help reveal the drivers of Amazonian fungal diversity. Ecology and Evolution, 10(14), 7509-7524.
Ritter, C. D., Zizka, A., Barnes, C., Nilsson, R. H., Roger, F., and Antonelli, A. (2019). Locality or habitat? Exploring predictors of biodiversity in Amazonia. Ecography, 42(2), 321-333.
Rodrigues, R. C. L. B., Rocha, G. J. M., Rodrigues, Jr., D., Filho, H. J. I., Felipe, M. G. A., & Pessoa, Jr., A. (2010). Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Bioresource Technology, 101(4), 1247-1253.
Sampaio, J. P. (1928). The yeasts, a taxonomic study. Elsevier 2011.
Sampaio, J. P., Gadanho, M., Santos, S., Duarte, F. L., Pais, C., Fonseca, A., & Fell, J. W. (2001). Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related anamorphic species. International Journal of Systematic and Evolutionary Microbiology, 51(2), 687-697.
Sampaio, J. P., & Gonçalves, P. (2008). Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Applied and Environmental Microbiology, 74(7), 2144-2152.
Santos, A. R. O., Lee, D. K., Ferreira, A. G., Carmo, M. C., Rondelli, V. M., Barros, K. O., Hsiang, T., Rosa, C. A., & Lachance, M. A. (2020). The yeast community of conotelus sp. (Coleoptera: Nitidulidae) in Brazilian passionfruit flowers (Passiflora edulis) and description of Metschnikowia amazonensis sp. nov., a large spored clade yeast. Yeast, 37(3), 253-260.
Sato, T. K., Tremaine, M., Parreiras, L. S., Hebert, A. S., Myers, K. S., Higbee, A. J., Sardi, M., McIlwain, S. J., Ong, I. M., Breuer, R. J., Avanasi Narasimhan, R., McGee, M. A., Dickinson, Q., La Reau, A., Xie, D., Tian, M., Reed, J. L., Zhang, Y., Coon, J. J., …, Landick, R. (2016). Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genetics, 12(10), e1006372.
Sayers, E. W., Beck, J., Bolton, E. E., Bourexis, D., Brister, J. R., Canese, K., Comeau, D. C., Funk, K., Kim, S., Klimke, W., Marchler-Bauer, A., Landrum, M., Lathrop, S., Lu, Z., Madden, T. L., O'Leary, N., Phan, L., Rangwala, S. H., Schneider, V. A., … Sherry, S. T. (2021). Database resources of the national center for biotechnology information. Nucleic Acids Research, 49(D1), D10-D17.
Seibold, S., Müller, J., Baldrian, P., Cadotte, M. W., Štursová, M., Biedermann, P. H. W., Krah, F. S., & Bässler, C. (2019). Fungi associated with beetles dispersing from dead wood-Let's take the beetle bus! Fungal Ecology, 39, 100-108.
Selgrath, J. C., & Gergel, S. E. (2019). How much is enough? Improving participatory mapping using area rarefaction curves. Land, 8(11), 166.
Sena, L. M. F., Morais, C. G., Lopes, M. R., Santos, R. O., Uetanabaro, A. P. T., Morais, P. B., Vital, M. J. S., de Morais, M. A., Lachance, M. A., & Rosa, C. A. (2017). D-xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella. Antonie Van Leeuwenhoek, 110(1), 53-67.
Shen, X. X., Opulente, D. A., Kominek, J., Zhou, X., Steenwyk, J. L., Buh, K. V., Haase, M. A. B., Wisecaver, J. H., Wang, M., Doering, D. T., Boudouris, J. T., Schneider, R. M., Langdon, Q. K., Ohkuma, M., Endoh, R., Takashima, M., Manabe, R., Čadež, N., Libkind, D., …, Rokas, A. (2018). Tempo and mode of genome evolution in the budding yeast subphylum. Cell, 175(6), 1533-1545.
Shi, C. F., Zhang, K. H., Chai, C. Y., Yan, Z. L., & Hui, F. L. (2021). Diversity of the genus Sugiyamaella and description of two new species from rotting wood in China. MycoKeys, 77, 27-39.
Souza, G. F. L., Luana, T. C. N. V., Samila, R. P. N., & Maxwel, A. A. (2017). Efficient production of second-generation ethanol and xylitol by yeasts from Amazonian beetles (Coleoptera) and their galleries. African Journal of Microbiology Research, 11(20), 814-824.
Spurley, W. J., Fisher, K. J., Langdon, Q. K., Buh, K. V., Jarzyna, M., Haase, M. A. B., Sylvester, K., Moriarty, R. V., Rodriguez, D., Sheddan, A., Wright, S., Sorlie, L., Hulfachor, A. B., Opulente, D. A., & Hittinger, C. T. (2022). Substrate, temperature, and geographical patterns among nearly 2000 natural yeast isolates. Yeast, 39(1-2), 55-68.
Stefanini, I. (2018). Yeast-insect associations: It takes guts. Yeast, 35(4), 315-330.
Su, B., Song, D., & Zhu, H. (2020). Metabolic engineering of Saccharomyces cerevisiae for enhanced carotenoid production from xylose-glucose mixtures. Frontiers in Bioengineering and Biotechnology, 14(8), 435.
Suh, S. O., & Zhou, J. J. (2011). Kazachstania intestinalis sp. nov., an ascosporogenous yeast from the gut of passalid beetle Odontotaenius disjunctus. Antonie Van Leeuwenhoek, 100(1), 109-115.
Sun, J., Xia, Y., & Ming, D. (2020). Whole-genome sequencing and bioinformatics analysis of Apiotrichum mycotoxinivorans: Predicting putative zearalenone-degradation enzymes. Frontiers in Microbiology, 11, 1866.
Suzuki, M., & Kurtzman, C. P. (2010). Schwanniomyces klöcker emend. In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The yeasts, a taxonomic study (5th ed., Vol. 1, pp. 785-794). Elsevier.
Sylvester, K., Wang, Q. M., James, B., Mendez, R., Hulfachor, A. B., & Hittinger, C. T. (2015). Temperature and host preferences drive the diversification of Saccharomyces and other yeasts: A survey and the discovery of eight new yeast species. FEMS Yeast Research, 15(3), fov002.
Urbina, H., & Blackwell, M. (2012). Multilocus phylogenetic study of the Scheffersomyces yeast clade and characterization of the N-terminal region of xylose reductase gene. PLoS One, 7(6), e39128.
Urbina, H., Frank, R., & Blackwell, M. (2013). Scheffersomyces cryptocercus: A new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia, 105(3), 650-660.
Urien, C., Legrand, J., Montalent, P., Casaregola, S., & Sicard, D. (2019). Fungal species diversity in French bread sourdoughs made of organic wheat flour. Frontiers in Microbiology, 10, 201.
White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. W. (1990). Amplification and 660 direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315-322). Academic Press.
Xiao, W., Zhao, J., Yan, X., & Guan, Q. (2019). Tree diversity determines the diversity of the taxonomic and functional structure of the fungal community in forest litter in Southern China. Forest Science, 65(1), 40-47.

Auteurs

Katharina O Barros (KO)

Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Flávia B M Alvarenga (FBM)

Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Giulia Magni (G)

Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Gisele F L Souza (GFL)

Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Maxwel A Abegg (MA)

Institute of Exact Sciences and Technology (ICET), Federal University of Amazonas (UFAM), Itacoatiara, Brazil.

Fernanda Palladino (F)

Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Sílvio S da Silva (SS)

Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil.

Rita C L B Rodrigues (RCLB)

Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil.

Trey K Sato (TK)

DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Chris Todd Hittinger (CT)

DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Carlos A Rosa (CA)

Departmento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH