Revisiting phylogeny, systematics, and biogeography of a Pleistocene radiation.
Cactaceae
Cereeae
South America
dry forest
multilocus phylogeny
phylogenetic discordance
recent radiation
species tree
Journal
American journal of botany
ISSN: 1537-2197
Titre abrégé: Am J Bot
Pays: United States
ID NLM: 0370467
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
revised:
03
01
2023
received:
14
08
2022
accepted:
05
01
2023
medline:
30
3
2023
pubmed:
29
1
2023
entrez:
28
1
2023
Statut:
ppublish
Résumé
Pilosocereus (Cactaceae) is an important dry forest element in all subregions and transitional zones of the neotropics, with the highest diversity in eastern Brazil. The genus is subdivided into informal taxonomic groups; however, most of these are not supported by recent molecular phylogenetic inferences. This lack of confidence is probably due to the use of an insufficient number of loci and the complexity of cactus diversification. Here, we explored the species relationships in Pilosocereus in more detail, integrating multilocus phylogenetic approaches with the assessment of the ancestral range and the effect of geography on diversification shifts. We used 28 nuclear, plastid, and mitochondrial loci from 54 plant samples of 31 Pilosocereus species for phylogenetic analyses. We used concatenated and coalescent phylogenetic trees and Bayesian models to estimate the most likely ancestral range and diversification shifts. All Pilosocereus species were clustered in the same branch, except P. bohlei. The phylogenetic relationships were more associated with the geographic distribution than taxonomic affinities among taxa. The genus began diversifying during the Plio-Pleistocene transition in the Caatinga domain and experienced an increased diversification rate during the Calabrian age. We recovered a well-supported multispecies coalescent phylogeny. Our results refine the pattern of rapid diversification of Pilosocereus species across neotropical drylands during the Pleistocene and highlight the need for taxonomic rearrangements in the genus. We recovered a pulse of diversification during the Pleistocene that was likely driven by multiple dispersal and vicariance events within and among the Caatinga, Cerrado, and Atlantic Forest domains.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-17Informations de copyright
© 2023 Botanical Society of America.
Références
Amaral, D. T., I. Minhós-Yano, J. V. M. Oliveira, M. Romeiro-Brito, I. A. S. Bonatelli, N. P. Taylor, D. C. Zappi, et al. 2021. Tracking the xeric biomes of South America: the spatiotemporal diversification of mandacaru cactus. Journal of Biogeography 48: 3085-3103.
Anderson, E. F. 2001. The cactus family. Timber Press, Portland, OR, USA.
Arakaki, M., P.-A. Christin, R. Nyffeler, A. Lendel, U. Eggli, R. M. Ogburn, E. Spriggs, et al. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. Proceedings of the National Academy of Sciences, USA 108: 8379-8384.
Auler, A. S., X. Wang, R. L. Edwards, H. Cheng, P. S. Cristalli, P. L. Smart, and D. A. Richards. 2004. Quaternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. Journal of Quaternary Science 19: 693-701.
Barrow, L. N., H. F. Ralicki, S. A. Emme, and E. M. Lemmon. 2014. Species tree estimation of North American chorus frogs (Hylidae: Pseudacris) with parallel tagged amplicon sequencing. Molecular Phylogenetics and Evolution 75: 78-90.
Barthlott, W., K. Burstedde, J. L. Geffert, P. L. Ibisch, N. Korotkova, A. Miebach, M. D. Rafqpoor, et al. 2015. Biogeography and biodiversity of cacti. Schumannia 7. Universitätsverlag Isensee, Oldenburg, Germany.
BFG [Brazil Flora Group]. 2021. Brazilian flora 2020: Leveraging the power of a collaborative scientific network. Taxon 71: 178-198.
Blom, M. P. K., J. G. Bragg, S. Potter, and C. Moritz. 2017. Accounting for uncertainty in gene tree estimation: summary-coalescent species tree inference in a challenging radiation of Australian lizards. Systematic Biology 66: 352-366.
Bombonato, J. R., D. T. do Amaral, G. A. R. Silva, G. Khan, E. M. Moraes, S. C. da Silva Andrade, D. A. R. Eaton, et al. 2020. The potential of genome-wide RAD sequences for resolving rapid radiations: a case study in Cactaceae. Molecular Phylogenetics and Evolution 151: 106896.
Bonatelli, I. A. S., B. C. Carstens, and E. M. Moraes. 2015. Using next generation RAD sequencing to isolate multispecies microsatellites for Pilosocereus (Cactaceae). PLoS One 10: e0142602.
Bonatelli, I. A. S., M. F. Perez, A. T. Peterson, N. P. Taylor, D. C. Zappi, M. C. Machado, I. Koch, et al. 2014. Interglacial microrefugia and diversification of a cactus species complex: phylogeography and palaeodistributional reconstructions for Pilosocereus aurisetus and allies. Molecular Ecology 23: 3044-3063.
Bonatelli, I. A. S., D. C. Zappi, N. P. Taylor, and E. M. Moraes. 2013. Usefulness of cpDNA markers for phylogenetic and phylogeographic analyses of closely related cactus species. Genetics and Molecular Research 12: 4579-4585.
Borowiec, M. L. 2016. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4: e1660.
Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard, et al. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537.
Bouckaert, R. R., and A. J. Drummond. 2017. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology 17: 42.
Bravo, G. A., A. Antonelli, C. D. Bacon, K. Bartoszek, M. P. K. Blom, S. Huynh, G. Jones, et al. 2019. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 7: e6399.
Brito, P. H., and S. V. Edwards. 2009. Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135: 439-455.
Cai, L., Z. Xi, E. M. Lemmon, A. R. Lemmon, A. Mast, C. E. Buddenhagen, L. Liang, and C. C. Davis. 2021. The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Systematic Biology 70: 491-507.
Calvente, A., E. M. Moraes, P. Lavor, I. A. S. Bonatelli, P. Nacaguma, L. M. Versieux, N. P. Taylor, and D. C. Zappi. 2017. Phylogenetic analyses of Pilosocereus (Cactaceae) inferred from plastid and nuclear sequences. Botanical Journal of the Linnean Society 183: 25-38.
Campbell, V., P. Legendre, and F. J. Lapointe. 2011. The performance of the congruence among distance matrices (CADM) test in phylogenetic analysis. BMC Evolutionary Biology 11: 1-15.
Castro, J. P., A. P. Moraes, M. W. Chase, A. Santos, F. R. Batista, and L. P. Felix. 2020. Karyotype characterization and evolution of chromosome number in Cactaceae with special emphasis on subfamily Cactoideae. Acta Botanica Brasilica 34:135-148.
Copetti, D., A. Búrquez, E. Bustamante, J. L. M. Charboneau, K. L. Childs, L. E. Eguiarte, S. Lee, et al. 2017. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proceedings of the National Academy of Sciences, USA 114: 12003-12008.
Costa, G. C., A. Hampe, M. P. Ledru, P. A. Martinez, G. G. Mazzochini, D. B. Shepard, F. P. Werneck, et al. 2018. Biome stability in South America over the last 30 kyr: Inferences from long-term vegetation dynamics and habitat modelling. Global Ecology and Biogeography 27: 285-297.
Degnan, J. H., and N. A. Rosenberg. 2006. Discordance of species trees with their most likely gene trees. PLoS Genetics 2: e68.
Del'Arco, J. O., and P. E. L. Bezerra. 1989. Geologia. In Fundação Instituto Brasileiro de Geografia e Estatística [ed.], Geografia do Brasil, vol. 1, Região Centro-Oeste, 35-51. Instituto Brasileiro de Geografia e Estatística [IBGE], Rio de Janeiro, Brazil.
Dinerstein, E., D. Olson, A. Joshi, C. Vynne, N. D. Burgess, E. Wikramanayake, N. Hahn, et al. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67: 534-545.
Drummond, A. J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
Edwards, S. V. 2009. Is a new and general theory of molecular systematics emerging? Evolution 63: 1-19.
Edwards, S. V., Z. Xi, A. Janke, B. C. Faircloth, J. E. McCormack, T. C. Glenn, B. Zhong, et al. 2016. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Molecular Phylogenetics and Evolution 94: 447-462.
Fernandes, M. F., D. Cardoso, R. T. Pennington, L. P. de Queiroz. 2022. The origins and historical assembly of the Brazilian Caatinga Seasonally Dry Tropical Forests. Frontiers in Ecology and Evolution 10: 723286.
Figueredo, C. J., J. M. Nassar, A. E. García-Rivas, and J. A. González-Carcacía. 2010. Population genetic diversity and structure of Pilosocereus tillianus (Cactaceae, Cereeae), a columnar cactus endemic to the Venezuelan Andes. Journal of Arid Environments 74: 1392-1398.
Fraga, D. A., A. F. Carvalho, C. J. B. Ribeiro, R. S. Santana, M. C. Machado, and G. A. Lacorte. 2020. Establishing population boundaries and conservation proposals for Coleocephalocereus purpureus, a critically endangered cactus species microendemic from Caatinga biome. Journal for Nature Conservation 55: 125823.
Franck, A. R., D. Barrios, K. C. St. E. Campbell, J. Lange, B. Peguero, E. Santiago-Valentín, Z. Rigerszki, et al. 2019. Revision of Pilosocereus (Cactaceae) in the Caribbean and northern Andean region. Phytotaxa 411: 129-182.
Franco-Estrada, D., D. Barrios, C. R. Cervantes, X. Granados-Aguilar, and S. Arias. 2022. Phylogenetic and morphological analyses of Pilosocereus leucocephalus group ss (Cactaceae) reveal new taxonomical implications. Journal of Plant Research 135: 423-442.
Franco, F. F., C. L Jojima, M. F. Perez, D. C. Zappi, N. P. Taylor, E. M. Moraes. 2017. The xeric side of the Brazilian Atlantic Forest: the forces shaping phylogeographic structure of cacti. Ecology and Evolution 7: 9281-9293.
Franco, F. F., F. A. Silva, G. Khan, I. A. Bonatelli, D. T. Amaral, D. C. Zappi, N. P. Taylor, and E. M. Moraes. 2022. Generalizations of genetic conservation principles in islands are not always likely: a case study from a Neotropical insular cactus. Botanical Journal of the Linnean Society 199: 210-227.
Gehara, M., A. A. Garda, F. P. Werneck, E. F. Oliveira, E. M. da Fonseca, F. Camurugi, F. M. Magalhães, et al. 2017. Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Molecular Ecology 26: 4756-4771.
Gomes, V. G. N., M. V. Meiado, Z. G. M. Quirino, and I. C. Machado. 2016. Seed removal by lizards and effect of gut passage on germination in a columnar cactus of the Caatinga, a tropical dry forest in Brazil. Journal of Arid Environments 135: 85-89.
Gomes, V. S. da M., B. A. Loiselle, and M. A. S. Alves. 2008. Birds foraging for fruits and insects in shrubby restinga vegetation, southeastern Brazil. Biota Neotropica 8: 21-31.
Guiggi, A. 2022. A new generic status for Pilosocereus bohlei Hofacker (Cactaceae-Cereeae) from Bahia (NE Brazil). Cactology V (supplementum XIII): 4-5.
Hernández-Hernández, T., J. W. Brown, B. O. Schlumpberger, L. E. Eguiarte, and S. Magallón. 2014. Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. New Phytologist 202: 1382-1397.
Hoang, D. T., O. Chernomor, A. von Haeseler, B. Q. Minh, and L. S. Vinh. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518-522.
Hoxey, P., A. Gdaniec, W. Cinea. 2021. Notes on Pilosocereus (Cactaceae) from the island of Hispaniola and the description of three new species. Cactus and Succulent Journal 93: 98-111.
Hunt, D., N. P. Taylor, and G. Charles [eds.]. 2006. The new cactus lexicon: atlas & text. DH Books, Somerset, UK.
IUCN. 2021. The IUCN red list of threatened species, version 2021-3. International Union of Conservation of Nature, Cambridge, UK. Website: https://www.iucnredlist.org [accessed 28 December 2021].
Japsen, P., J. M. Bonow, P. F. Green, P. R. Cobbold, D. Chiossi, R. Lilletveit, L. P. Magnavita, et al. 2012. Episodic burial and exhumation in NE Brazil after opening of the South Atlantic. Geological Society of America Bulletin 124: 800-816.
Jesus, A. A., F. A. Ortolani, and E. M. Moraes. 2014. Cactaceae. Taxon 63: 1150-1151.
Jockusch, E. L., I. Martínez-Solano, and E. K. Timpe. 2015. The effects of inference method, population sampling, and gene sampling on species tree inferences: an empirical study in slender salamanders (Plethodontidae: Batrachoseps). Systematic Biology 64: 66-83.
Kalyaanamoorthy, S., B. Q. Minh, T. K. Wong, A. Von Haeseler, and L. S. Jermiin. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589.
Katoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
Khan, G., P. M. Ribeiro, I. A. S. Bonatelli, M. F. Perez, F. F. Franco, and E. M. Moraes. 2018. Weak population structure and no genetic erosion in Pilosocereus aureispinus: a microendemic and threatened cactus species from eastern Brazil. PLoS One 13: e0195475.
Klaus, K. V., and Matzke N. J. 2020. Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Systematic Biology 69: 61-75.
Knowles, L. L. 2009. Estimating species trees: methods of phylogenetic analysis when there is incongruence across genes. Systematic Biology 58: 463-467.
Korotkova, N., D. Aquino, S. Arias, U. Eggli, A. Franck, P. C. Guerrero, H. M. Hernández, et al. 2021. Cactaceae at Caryophyllales.org - a dynamic online species-level taxonomic backbone for the family. Willdenowia 51: 251-270.
Kubatko, L. S., and J. H. Degnan. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence Systematic Biology 56: 17-24.
Lavor, P., A. Calvente, L. M. Versieux, and I. Sanmartin. 2019. Bayesian spatio-temporal reconstruction reveals rapid diversification and Pleistocene range expansion in the widespread columnar cactus Pilosocereus. Journal of Biogeography 46: 238- 250.
Lavor, P., L. M. Versieux, and A. Calvente. 2020. Phylogenetic relationships of Pilosocereus (Cactaceae) and taxonomic implications. PlantNow 1: 52-70.
Lemmon, E. M., and A. R. Lemmon. 2013. High-throughput genomic data in systematics and phylogenetics. Annual Review of Ecology, Evolution, and Systematics 44: 99-121.
Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv arXiv:1303.3997 [preprint].
Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079.
Machado, M., and G. Charles. 2004. Pilosocereus bohlei Hofacker-a remarkable new species from Brazil. British Cactus & Succulent Journal 22: 188-192.
Magallón, S., S. Gómez-Acevedo, L. L. Sánchez-Reyes, and T. Hernández-Hernández. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437-453.
Majure, L. C., D. Barrios, E. Díaz, B. A. Zumwalde, W. Testo, and V. Negrón-Ortíz. 2021. Pleistocene aridification underlies the evolutionary history of the Caribbean endemic, insular, giant Consolea (Opuntioideae). American Journal of Botany 108: 200-215.
Majure, L. C., D. Barrios, E. Díaz, L. F. Bacci, and Y. E. Piñeyro. 2022. Phylogenomics of the Caribbean melocacti: cryptic species and multiple invasions. Taxon 71: 993-1012.
Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17: 10-12.
Matzke, N. J. 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. University of California, Berkeley, CA, USA.
Matzke, N. J. 2022. Statistical comparison of DEC and DEC+J is identical to comparison of two ClaSSE submodels, and is therefore valid. Journal of Biogeography 49: 1805-1824.
McCormack, J. E., J. Heled, K. S. Delaney, A. T. Peterson, and L. L. Knowles. 2011. Calibrating divergence times on species trees versus gene trees: implications for speciation history of Aphelocoma jays: divergence dating on species trees. Evolution 65: 184-202.
McGuire, G., and F. Wright. 2000. TOPAL 2.0: improved detection of mosaic sequences within multiple alignments. Bioinformatics 16: 130-134.
McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20: 1297-1303.
Menezes, M. O. T., N. P. Taylor, D. C. Zappi, and M. I. B. Loiola. 2015. Spines and ribs of Pilosocereus arrabidae (Lem.) Byles & G.D. Rowley and allies (Cactaceae): Ecologic or genetic traits? Flora - Morphology, Distribution, Functional Ecology of Plants 214: 44-49.
Menezes, M. O., D. C. Zappi, E. M. Moraes, F. F. Franco, N. P. Taylor, I. R. Costa, and M. I. Loiola. 2016. Pleistocene radiation of coastal species of Pilosocereus (Cactaceae) in eastern Brazil. Journal of Arid Environments 135: 22-32.
Merklinger, F. F., T. Böhnert, M. Arakaki, M. Weigend, D. Quandt, F. Luebert. 2021. Quaternary diversification of a columnar cactus in the driest place on earth. American Journal of Botany 108: 184-199.
Milne, I., D. Lindner, M. Bayer, D. Husmeier, G. McGuire, D. F. Marshall, and F. Wright. 2009. TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25: 126-127.
Mitchell, N., and K. D. Whitney. 2019. Hybridization and diversification are positively correlated across vascular plant families. bioRxiv https://doi.org/10.1101/724377 [preprint].
Moore, B. R., S. Höhna, M. R. May, B. Rannala, and J. P. Huelsenbeck. 2016. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proceedings of the National Academy of Sciences, USA 113: 9569-9574.
Moraes, E. M., A. G. Abreu, S. C. S. Andrade, F. M. Sene, and V. N. Solferini. 2005. Population genetic structure of two columnar cacti with a patchy distribution in eastern Brazil. Genetica 125: 311-323.
Moraes, E. M., M. F. Perez, M. F. Téo, D. C. Zappi, N. P. Taylor, and M. C. Machado. 2012. Cross-species amplification of microsatellites reveals incongruence in the molecular variation and taxonomic limits of the Pilosocereus aurisetus group (Cactaceae). Genetica 140: 277-285.
Morrone, J. J. 2014. Biogeographical regionalisation of the Neotropical region. Zootaxa 3782: 1-110.
Munguía-Rosas, M. A., M. E. Jácome-Flores, V. J. Sosa, and L. M. Quiroz-Cerón. 2009a. Removal of Pilosocereus leucocephalus (Cactaceae, tribe Cereeae) seeds by ants and their potential role as primary seed dispersers. Journal of Arid Environments 73: 578-581.
Munguía-Rosas, M. A., V. J. Sosa, M. E. Jácome-Flores. 2009b. Pollination system of the Pilosocereus leucocephalus columnar cactus (tribe Cereeae) in eastern Mexico. Plant Biology 12: 578-586.
Nace, T. E., P. A. Baker, G. S. Dwyer, C. G. Silva, C. A. Rigsby, S. J. Burns, L. Giosan, et al. 2014. The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 415: 3-13.
Nassar, J. M., J. L. Hamrick, and T. H. Fleming. 2003. Population genetic structure of Venezuelan chiropterophilous columnar cacti (Cactaceae). American Journal of Botany 90: 1628-1637.
Nguyen, L. T., H. A. Schmidt, A. Von Haeseler and B. Q. Minh. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.
Nyffeler, R., and U. Eggli. 2010. A farewell to dated ideas and concepts - molecular phylogenetics and a revised suprageneric classification of the family Cactaceae. Schumannia 6: 109-149.
Olave, M., L. J. Avila, J. W. Sites, and M. Morando. 2015. Model-based approach to test hard polytomies in the Eulaemus clade of the most diverse South American lizard genus Liolaemus (Liolaemini, Squamata): testing hard polytomies in Eulaemus lizards. Zoological Journal of the Linnean Society 174: 169-184.
Paradis, E., and K. Schliep. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528.
Perez, M. F., I. A. S. Bonatelli, E. M. Moraes, and B. C. Carstens. 2016a. Model-based analysis supports interglacial refugia over long-dispersal events in the diversification of two South American cactus species. Heredity 116: 550-557.
Perez, M. F., I. A. S. Bonatelli, M. Romeiro-Brito, F. F. Franco, N. P. Taylor, D. C. Zappi, and E. M. Moraes. 2022. Coalescent-based species delimitation meets deep learning: insights from a highly fragmented cactus system. Molecular Ecology Resources 22: 1016-1028.
Perez, M. F., B. C. Carstens, G. L. Rodrigues, and E. M. Moraes. 2016b. Anonymous nuclear markers reveal taxonomic incongruence and long-term disjunction in a cactus species complex with continental-island distribution in South America. Molecular Phylogenetics and Evolution 95: 11-19.
Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. CODA: Convergence diagnosis and output analysis for MCMC. R News 6: 7-11. Website: https://journal.r-project.org/archive/
Quijada-Mascareñas, A., J. E. Ferguson, C. E. Pook, M. D. G. Salomao, R. S. Thorpe, and W. Wüster. 2007. Phylogeographic patterns of trans-Amazonian vicariants and Amazonian biogeography: the Neotropical rattlesnake (Crotalus durissus complex) as an example. Journal of Biogeography 34: 1296-1312.
R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website: https://www.R-project.org/
Rabosky, D. L. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One 9: e89543.
Rabosky, D. L., M. Grundler, C. Anderson, P. Title, J. J. Shi, J. W. Brown, H. Huang, and J. G. Larson. 2014. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution 5: 701-707.
Rabosky, D. L., J. S. Mitchell, and J. Chang. 2017. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Systematic Biology 66: 477-498.
Rambaut, A., A. J. Drummond, D. Xie, G. Baele, and M. A. Suchard. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901-904.
Ree, R. H., and I. Sanmartın. 2018. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography 45: 741-749.
Rocha, E. A., A. Domingos-Melo, D. C. Zappi, and I. C. Machado. 2019. Reproductive biology of columnar cacti: Are bats the only protagonists in the pollination of Pilosocereus, a typical chiropterophilous genus? Folia Geobotanica 54: 239-256.
Silva, A. C., and A. F. Souza. 2018. Aridity drives plant biogeographical subregions in the Caatinga, the largest tropical dry forest and woodland block in South America. PLoS One 13: e0196130.
Silva, J. M. C. 1995. Biogeographic analysis of the South American Cerrado avifauna. Steenstrupia 21: 49-67.
Simon, M. F., R. Grether, L. P. de Queiroz, C. Skema, R. T. Pennington, and C. E. Hughes. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences, USA 106: 20359-20364.
Stamatakis, A., P. Hoover, and J. Rougemont. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758-771.
Taylor, N., and D. Zappi. 2004. Cacti of eastern Brazil. Royal Botanic Garden, Kew, UK.
Thomé, M. T. C., F. Sequeira, F. Brusquetti, B. C. Carstens, C. F. B. Haddad, M. T. Rodrigues, and J. Alexandrino. 2016. Recurrent connections between Amazon and Atlantic forests shaped diversity in Caatinga four-eyed frogs. Journal of Biogeography 43: 1045-1056.
Van Bel, M., Silvestri, F., Weitz, E. M., Kreft, L., Botzki, A., Coppens, F., and Vandepoele, K. 2022. PLAZA 5.0: Extending the scope and power of comparative and functional genomics in plants. Nucleic Acids Resources 50: 1468-1474.
Van der Hammen, T. 1974. The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1: 3-26.
Vázquez-Castillo, S., A. Miranda-Jácome and E. Ruelas-Inzunza. 2019. Patterns of frugivory in the columnar cactus Pilosocereus leucocephalus. Ecology and Evolution 9: 1268-1277.
Villalobos-Barrantes, H. M., B. M. Meriño, H. E. Walter, and P. C. Guerrero. 2022. Independent evolutionary lineages in a globular cactus species complex reveals hidden diversity in a central Chile biodiversity hotspot. Genes 13: 240.
Wang, N., Y. Yang, M. J. Moore, S. F. Brockington, J. F. Walker, J. W. Brown, B. Liang, et al. 2019. Evolution of Portulacineae marked by gene tree conflict and gene family expansion associated with adaptation to harsh environments. Molecular Biology and Evolution 36: 112-126.
Werneck, F. P., G. C. Costa, G. R. Colli, D. E. Prado, and J. W. Sites 2011. Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidencegeb. Global Ecology and Biogeography 20: 272-288.
Weyenberg, G., P. M. Huggins, C. L. Schardl, D. K. Howe, and R. Yoshida. 2014. Kdetrees: non-parametric estimation of phylogenetic tree distributions. Bioinformatics 30: 2280-2287.
Whitfield, J. B., and P. J. Lockhart. 2007. Deciphering ancient rapid radiations. Trends in Ecology & Evolution 22: 258-265.
Xi, Z., L. Liu, J. S. Rest, and C. C. Davis. 2014. Coalescent versus concatenation methods and the placement of Amborella as sister to water lilies. Systematic Biology 63: 919-932.
Zappi, D. C. 1994. Pilosocereus (Cactaceae). The genus in Brazil. Royal Botanic Gardens, Kew, UK.