Structural basis for assembly and lipid-mediated gating of LRRC8A:C volume-regulated anion channels.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
06 2023
Historique:
received: 30 01 2023
accepted: 22 02 2023
medline: 21 6 2023
pubmed: 18 3 2023
entrez: 17 3 2023
Statut: ppublish

Résumé

Leucine-rich repeat-containing protein 8 (LRRC8) family members form volume-regulated anion channels activated by hypoosmotic cell swelling. LRRC8 channels are ubiquitously expressed in vertebrate cells as heteromeric assemblies of LRRC8A (SWELL1) and LRRC8B-E subunits. Channels of different subunit composition have distinct properties that explain the functional diversity of LRRC8 currents across cell types. However, the basis for heteromeric LRRC8 channel assembly and function is unknown. Here we leverage a fiducial-tagging strategy to determine single-particle cryo-EM structures of heterohexameric LRRC8A:C channels in multiple conformations. Compared to homomers, LRRC8A:C channels show pronounced differences in architecture due to heterotypic LRR interactions that displace subunits away from the conduction axis and poise the channel for activation. Structures and functional studies further reveal that lipids embedded in the channel pore block ion conduction in the closed state. These results provide insight into determinants for heteromeric LRRC8 channel assembly, activity and gating by lipids.

Identifiants

pubmed: 36928458
doi: 10.1038/s41594-023-00944-6
pii: 10.1038/s41594-023-00944-6
doi:

Substances chimiques

Membrane Proteins 0
Anions 0
Lipids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

841-852

Informations de copyright

© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Nilius, B. et al. Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68, 69–119 (1997).
pubmed: 9481145 doi: 10.1016/S0079-6107(97)00021-7
Hoffmann, E. K., Lambert, I. H. & Pedersen, S. F. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277 (2009).
pubmed: 19126758 doi: 10.1152/physrev.00037.2007
Voss, F. K. et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344, 634–638 (2014).
pubmed: 24790029 doi: 10.1126/science.1252826
Qiu, Z. et al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157, 447–458 (2014).
pubmed: 24725410 pmcid: 4023864 doi: 10.1016/j.cell.2014.03.024
Jentsch, T. J. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat. Rev. Mol. Cell Biol. 17, 293–307 (2016).
pubmed: 27033257 doi: 10.1038/nrm.2016.29
Strange, K., Yamada, T. & Denton, J. S. A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel. J. Gen. Physiol. 151, 100–117 (2019).
pubmed: 30651298 pmcid: 6363415 doi: 10.1085/jgp.201812138
Hyzinski-García, M. C., Rudkouskaya, A. & Mongin, A. A. LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes. J. Physiol. 592, 4855–4862 (2014).
pubmed: 25172945 pmcid: 4259531 doi: 10.1113/jphysiol.2014.278887
Lutter, D., Ullrich, F., Lueck, J. C., Kempa, S. & Jentsch, T. J. Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels. J. Cell Sci. 130, 1122–1133 (2017).
pubmed: 28193731
Yang, J. et al. Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron 102, 813–827 (2019).
pubmed: 30982627 pmcid: 6685291 doi: 10.1016/j.neuron.2019.03.029
Lahey, L. J. et al. LRRC8A:C/E heteromeric channels are ubiquitous transporters of cGAMP. Mol. Cell 80, 578–591 (2020).
pubmed: 33171122 doi: 10.1016/j.molcel.2020.10.021
Zhou, C. et al. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral. Immunity 52, 767–781 (2020).
pubmed: 32277911 doi: 10.1016/j.immuni.2020.03.016
Chen, X. et al. Regulation of anion channel LRRC8 volume-regulated anion channels in transport of 2′3′-cyclic GMP-AMP and cisplatin under steady state and inflammation. J. Immunol. 206, 2061–2074 (2021).
pubmed: 33827893 doi: 10.4049/jimmunol.2000989
Zhang, Y. et al. SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat. Cell Biol. 19, 504–517 (2017).
pubmed: 28436964 pmcid: 5415409 doi: 10.1038/ncb3514
Kang, C. et al. SWELL1 is a glucose sensor regulating β-cell excitability and systemic glycaemia. Nat. Commun. 9, 367 (2018).
pubmed: 29371604 pmcid: 5785485 doi: 10.1038/s41467-017-02664-0
Stuhlmann, T., Planells-Cases, R. & Jentsch, T. J. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat. Commun. 9, 1974 (2018).
pubmed: 29773801 pmcid: 5958052 doi: 10.1038/s41467-018-04353-y
Menegaz, D. et al. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat. Metab. 1, 1110–1126 (2019).
pubmed: 32432213 pmcid: 7236889 doi: 10.1038/s42255-019-0135-7
Gunasekar, S. K. et al. Small molecule SWELL1 complex induction improves glycemic control and nonalcoholic fatty liver disease in murine Type 2 diabetes. Nat. Commun. 13, 784 (2022).
pubmed: 35145074 pmcid: 8831520 doi: 10.1038/s41467-022-28435-0
Lück, J. C., Puchkov, D., Ullrich, F. & Jentsch, T. J. LRRC8/VRAC anion channels are required for late stages of spermatid development in mice. J. Biol. Chem. 293, 11796–11808 (2018).
pubmed: 29880644 pmcid: 6066314 doi: 10.1074/jbc.RA118.003853
Chen, L., Becker, T. M., Koch, U. & Stauber, T. The LRRC8/VRAC anion channel facilitates myogenic differentiation of murine myoblasts by promoting membrane hyperpolarization. J. Biol. Chem. 294, 14279–14288 (2019).
pubmed: 31387946 pmcid: 6768655 doi: 10.1074/jbc.RA119.008840
Kumar, A. et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. eLife 9, e58941 (2020).
pubmed: 32930093 pmcid: 7541086 doi: 10.7554/eLife.58941
Alghanem, A. F. et al. The SWELL1-LRRC8 complex regulates endothelial AKT-eNOS signaling and vascular function. eLife 10, e61313 (2021).
pubmed: 33629656 pmcid: 7997661 doi: 10.7554/eLife.61313
Pervaiz, S., Kopp, A., Kleist, von, L. & Stauber, T. Absolute protein amounts and relative abundance of Volume-Regulated Anion Channel (VRAC) LRRC8 subunits in cells and tissues revealed by quantitative immunoblotting. Int. J. Mol. Sci. 20, 5879 (2019).
pubmed: 31771171 pmcid: 6928916 doi: 10.3390/ijms20235879
Lee, C. C., Freinkman, E., Sabatini, D. M. & Ploegh, H. L. The protein synthesis inhibitor blasticidin S enters mammalian cells via leucine-rich repeat-containing protein 8D. J. Biol. Chem. 289, 17124–17131 (2014).
pubmed: 24782309 pmcid: 4059153 doi: 10.1074/jbc.M114.571257
Planells-Cases, R. et al. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J. 34, 2993–3008 (2015).
pubmed: 26530471 pmcid: 4687416 doi: 10.15252/embj.201592409
Syeda, R. et al. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164, 499–511 (2016).
pubmed: 26824658 pmcid: 4733249 doi: 10.1016/j.cell.2015.12.031
Deneka, D., Sawicka, M., Lam, A. K. M., Paulino, C. & Dutzler, R. Structure of a volume-regulated anion channel of the LRRC8 family. Nature 558, 254–259 (2018).
pubmed: 29769723 doi: 10.1038/s41586-018-0134-y
Kefauver, J. M. et al. Structure of the human volume regulated anion channel. eLife 7, e38461 (2018).
pubmed: 30095067 pmcid: 6086657 doi: 10.7554/eLife.38461
Kasuya, G. et al. Cryo-EM structures of the human volume-regulated anion channel LRRC8. Nat. Struct. Mol. Biol. 25, 797–804 (2018).
pubmed: 30127360 doi: 10.1038/s41594-018-0109-6
Kern, D. M., Oh, S., Hite, R. K. & Brohawn, S. G. Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs. eLife 8, e42636 (2019).
pubmed: 30775971 pmcid: 6395065 doi: 10.7554/eLife.42636
Nakamura, R. et al. Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation. Commun. Biol. 3, 240 (2020).
pubmed: 32415200 pmcid: 7229184 doi: 10.1038/s42003-020-0951-z
Deneka, D. et al. Allosteric modulation of LRRC8 channels by targeting their cytoplasmic domains. Nat. Commun. 12, 5435 (2021).
pubmed: 34521847 pmcid: 8440666 doi: 10.1038/s41467-021-25742-w
Gaitán-Peñas, H. et al. Investigation of LRRC8-mediated volume-regulated anion currents in Xenopus oocytes. Biophys. J. 111, 1429–1443 (2016).
pubmed: 27705766 pmcid: 5052465 doi: 10.1016/j.bpj.2016.08.030
Gaitán-Peñas, H., Pusch, M. & Estévez, R. Expression of LRRC8/VRAC currents in Xenopus oocytes: advantages and caveats. Int. J. Mol. Sci. 19, 719 (2018).
pubmed: 29498698 pmcid: 5877580 doi: 10.3390/ijms19030719
König, B., Hao, Y., Schwartz, S., Plested, A. J. & Stauber, T. A FRET sensor of C-terminal movement reveals VRAC activation by plasma membrane DAG signaling rather than ionic strength. eLife 8, e45421 (2019).
pubmed: 31210638 pmcid: 6597245 doi: 10.7554/eLife.45421
Zhou, P., Polovitskaya, M. M. & Jentsch, T. J. LRRC8 N termini influence pore properties and gating of Volume-Regulated Anion Channels (VRACs). J. Biol. Chem. 293, 13440–13451 (2018).
pubmed: 29925591 pmcid: 6120214 doi: 10.1074/jbc.RA118.002853
Yamada, T. & Strange, K. Intracellular and extracellular loops of LRRC8 are essential for volume-regulated anion channel function. J. Gen. Physiol. 150, 1003–1015 (2018).
pubmed: 29853476 pmcid: 6028502 doi: 10.1085/jgp.201812016
Yamada, T., Figueroa, E. E., Denton, J. S. & Strange, K. LRRC8A homohexameric channels poorly recapitulate VRAC regulation and pharmacology. Am. J. Physiol. Cell Physiol. 320, C293–C303 (2021).
pubmed: 33356947 doi: 10.1152/ajpcell.00454.2020
Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012).
pubmed: 22681902 pmcid: 3375611 doi: 10.1016/j.str.2012.04.010
Tsutsumi, N. et al. Structure of human Frizzled5 by fiducial-assisted cryo-EM supports a heterodimeric mechanism of canonical Wnt signaling. eLife 9, e58464 (2020).
pubmed: 32762848 pmcid: 7442489 doi: 10.7554/eLife.58464
Mukherjee, S. et al. Synthetic antibodies against BRIL as universal fiducial marks for single-particle cryoEM structure determination of membrane proteins. Nat. Commun. 11, 1598 (2020).
pubmed: 32221310 pmcid: 7101349 doi: 10.1038/s41467-020-15363-0
Ullrich, F., Reincke, S. M., Voss, F. K., Stauber, T. & Jentsch, T. J. Inactivation and anion selectivity of Volume-Regulated Anion Channels (VRACs) depend on C-terminal residues of the first extracellular loop. J. Biol. Chem. 291, 17040–17048 (2016).
pubmed: 27325695 pmcid: 5016109 doi: 10.1074/jbc.M116.739342
Ereño-Orbea, J. et al. Structural basis of enhanced crystallizability induced by a molecular chaperone for antibody antigen-binding fragments. J. Mol. Biol. 430, 322–336 (2018).
pubmed: 29277294 doi: 10.1016/j.jmb.2017.12.010
Hermans, W.J.J., ten Haaft, M.R. & Overweel, A. Method for affinity purification. US patent US20170369527A1 (2017); https://patents.google.com/patent/US20170369527A1/en
Tombola, F., Ulbrich, M. H. & Isacoff, E. Y. The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron 58, 546–556 (2008).
pubmed: 18498736 pmcid: 2430592 doi: 10.1016/j.neuron.2008.03.026
Brohawn, S. G., Campbell, E. B. & MacKinnon, R. Physical mechanism for gating and mechanosensitivity of the human TRAAK K
pubmed: 25471887 pmcid: 4682367 doi: 10.1038/nature14013
Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).
pubmed: 33239794 pmcid: 8477435 doi: 10.1038/s41586-020-2933-1
Romanenko, V. G., Davies, P. F. & Levitan, I. Dual effect of fluid shear stress on volume-regulated anion current in bovine aortic endothelial cells. Am. J. Physiol. Cell Physiol. 282, C708–C718 (2002).
pubmed: 11880259 doi: 10.1152/ajpcell.00247.2001
Browe, D. M. & Baumgarten, C. M. Stretch of β1 integrin activates an outwardly rectifying chloride current via FAK and Src in rabbit ventricular myocytes. J. Gen. Physiol. 122, 689–702 (2003).
pubmed: 14610020 pmcid: 2229598 doi: 10.1085/jgp.200308899
Best, L. & Brown, P. D. Studies of the mechanism of activation of the volume-regulated anion channel in rat pancreatic β-cells. J. Membr. Biol. 230, 83–91 (2009).
pubmed: 19669073 doi: 10.1007/s00232-009-9189-x
Abascal, F. & Zardoya, R. LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication. Bioessays 34, 551–560 (2012).
pubmed: 22532330 doi: 10.1002/bies.201100173
Syrjanen, J., Michalski, K., Kawate, T. & Furukawa, H. On the molecular nature of large-pore channels. J. Mol. Biol. 433, 166994 (2021).
pubmed: 33865869 pmcid: 8409005 doi: 10.1016/j.jmb.2021.166994
Drożdżyk, K. et al. Cryo-EM structures and functional properties of CALHM channels of the human placenta. eLife 9, e55853 (2020).
pubmed: 32374262 pmcid: 7242029 doi: 10.7554/eLife.55853
Burendei, B. et al. Cryo-EM structures of undocked innexin-6 hemichannels in phospholipids. Sci. Adv. 6, eaax3157 (2020).
pubmed: 32095518 pmcid: 7015682 doi: 10.1126/sciadv.aax3157
Syrjanen, J. L. et al. Structure and assembly of calcium homeostasis modulator proteins. Nat. Struct. Mol. Biol. 27, 150–159 (2020).
pubmed: 31988524 pmcid: 7015811 doi: 10.1038/s41594-019-0369-9
Kuzuya, M. et al. Structures of human pannexin-1 in nanodiscs reveal gating mediated by dynamic movement of the N terminus and phospholipids. Sci. Signal. 15, eabg6941 (2022).
pubmed: 35133866 doi: 10.1126/scisignal.abg6941
Takahashi, H., Yamada, T., Denton, J. S., Strange, K. & Karakas, E. Structure of a LRRC8 chimera with physiologically relevant properties reveals heptameric assembly and pore-blocking lipids. Preprint at https://www.biorxiv.org/content/10.1101/2022.07.28.501913v2.full (2022).
Rutz, S., Deneka, D., Dittmann, A., Sawicka, M. & Dutzler, R. Structure of a volume-regulated heteromeric LRRC8A/C channel. Nat Struct Mol Biol 30, 52–61 (2023).
pubmed: 36522427 doi: 10.1038/s41594-022-00899-0
Chu, R. et al. Redesign of a four-helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X-ray crystallography. J. Mol. Biol. 323, 253–262 (2002).
pubmed: 12381319 doi: 10.1016/S0022-2836(02)00884-7
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).
pubmed: 16615909 doi: 10.1016/j.str.2006.01.013
Ritchie, T. K. et al. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).
pubmed: 19903557 pmcid: 4196316 doi: 10.1016/S0076-6879(09)64011-8
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980 pmcid: 6760662 doi: 10.1016/j.jsb.2015.08.008
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).
pubmed: 33257830 doi: 10.1038/s41592-020-00990-8
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).
pubmed: 31591578 pmcid: 6858545 doi: 10.1038/s41592-019-0575-8
Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).
pubmed: 30713699 pmcid: 6327179 doi: 10.1107/S205225251801463X
Asarnow, D., Palovcak, E. & Cheng, Y. asarnow/pyem: UCSF pyem v0.5 (Zenodo, 2019); https://doi.org/10.5281/zenodo.3576630
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. IUCr. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).
pubmed: 31588918 pmcid: 6778852 doi: 10.1107/S2059798319011471
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
pubmed: 29067766 doi: 10.1002/pro.3330
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
pubmed: 28710774 doi: 10.1002/pro.3235
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354-60–354-76 (1996).
pubmed: 9195488 doi: 10.1016/S0263-7855(97)00009-X

Auteurs

David M Kern (DM)

Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA.
Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA.

Julia Bleier (J)

Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.

Somnath Mukherjee (S)

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.

Jennifer M Hill (JM)

Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA.

Anthony A Kossiakoff (AA)

Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.

Ehud Y Isacoff (EY)

Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA.
Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA.

Stephen G Brohawn (SG)

Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA. brohawn@berkeley.edu.
Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA. brohawn@berkeley.edu.
California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA. brohawn@berkeley.edu.

Articles similaires

Humans Stomach Neoplasms Macrophages Tumor Microenvironment Disease Progression
Animals Humans TOR Serine-Threonine Kinases Lupus Erythematosus, Systemic Arthritis, Rheumatoid

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals
1.00
Animals Inflammation Mice Membrane Proteins Humans

Classifications MeSH